Carbon turns over much faster through basal food-chain levels in aquatic than in terrestrial ecosystems

Global temperatures have increased dramatically over the past century, which is causing major impacts on climate patterns, ocean circulation and wildlife preservation. The increase in temperature is largely due to a rise of anthropogenic emissions of greenhouse gases, of which CO2 is one of the most important.

To understand the capacity of ecosystems to sequester excesses of atmospheric CO2 and improve our ability to predict future climate change scenarios, we must first improve our knowledge of how carbon moves through the food chain of aquatic and terrestrial ecosystems.

In the March issue of Ecology Letters, Cebrian shows that aquatic ecosystems turn over carbon through the basal levels of the food chain at a more than ten times faster rate than do terrestrial ecosystems. This means that carbon stored in basal trophic levels is released back to the atmosphere or transferred to higher trophic levels much more quickly in aquatic than in terrestrial ecosystems. Thus, aquatic ecosystems should have a much lower capacity for retaining carbon in situations of higher CO2 availability. These results help refine current and future estimates of global carbon cycling and implications on climate change.

Media Contact

Kate Stinchcombe Blackwell Publishing Ltd

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…

Microscopic view of blood cells representing ASXL1 mutation research findings.

ASXL1 Mutation: The Hidden Trigger Behind Blood Cancers and Inflammation

Scientists show how a mutated gene harms red and white blood cells. LA JOLLA, CA—Scientists at La Jolla Institute for Immunology (LJI) have discovered how a mutated gene kicks off…