Experiment suggests limitations to carbon dioxide 'tree banking'

These results from the decade-long Free Air Carbon Enrichment (FACE) experiment in a Duke University forest suggest that proposals to bank extra CO2 from human activities in such trees may depend on the vagaries of the weather and large scale forest fertilization efforts, said Ram Oren, the FACE project director.

“If water availability decreases to plants at the same time that carbon dioxide increases, then we might not have a net gain in carbon sequestration,” said Oren, a professor of ecology at Duke's Nicholas School of the Environment and Earth Sciences.

“In order to actually have an effect on the atmospheric concentration of CO2, the results suggest a future need to fertilize vast areas,” Oren added. “And the impact on water quality of fertilizing large areas will be intolerable to society. Water is already a scarce resource. “

In a presentation delivered on Tuesday, Aug. 7 by Heather McCarthy, Oren's former graduate student, eight scientists working at the FACE site reported on the daily administrations of 1 1/2 times today's CO2 levels and how it has changed carbon accumulations in plants growing there.

The Department of Energy-funded FACE site consists of four forest plots receiving extra CO2 from computer-controlled valves mounted on rings of towers, and four other matched plots receiving no extra gas.

Trees in the loblolly pine-dominated forest plots that were treated produced about 20 percent more biomass on average, the researchers found. But since the amounts of available water and nitrogen nutrients varied substantially from plot to plot, using averages could be misleading.

“In some areas, the growth is maybe 5 or 10 percent more, and in other areas it's 40 percent more,” Oren said. “So in sites that are poor in nutrients and water we see very little response. In sites that are rich in both we see a large response.”

The researchers found that extra carbon dioxide had no effect on what foresters call “self thinning” — the tendency of less-successful trees to die off as the most-successful grow bigger.

“We didn't find that elevated CO2 caused any deviation from this standard relationship,” said McCarthy, now a postdoctoral fellow at the University of California, Irvine.

Also unchanged by the CO2 enrichment were the proportions of carbon atoms that found their way to various components of plant systems — wood, leaves, roots and underlying soil. Only a few of those components will store carbon over time, noted Oren and McCarthy.

“Carbon that's in foliage is going to last a lot shorter time than carbon in the wood, because leaves quickly decay,” McCarthy said. “So elevated CO2 could significantly increase the production of foliage but this would lead to only a very small increase in ecosystem carbon storage.”

Media Contact

Monte Basgall EurekAlert!

More Information:

http://www.duke.edu

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…