North Atlantic slows on the uptake of CO2
Since the industrial revolution, much of the CO2 we have released into the atmosphere has been taken up by the world’s oceans which act as a strong ‘sink’ for the emissions.
This has slowed climate change. Without this uptake, CO2 levels would have risen much faster and the climate would be warming more rapidly.
A paper in the Journal of Geophysical Research by Dr Ute Schuster and Professor Andrew Watson of UEA’s School of Environmental Sciences again raises concerns that the oceans might be slowing their uptake of CO2.
Results of their decade-long study in the North Atlantic show that the uptake in this ocean, which is the most intense sink for atmospheric CO2, slowed down dramatically between the mid-nineties and the early 2000s.
A slowdown in the sink in the Southern Ocean had already been inferred, but the change in the North Atlantic is greater and more sudden, and could be responsible for a substantial proportion of the observed weakening.
The observations were made from merchant ships equipped with automatic instruments for measuring carbon dioxide in the water. Much of the data has come from a container ship carrying bananas from the West Indies to the UK, making a round-trip of the Atlantic every month. The MV Santa Maria, chartered by Geest, has generated more than 90,000 measurements of CO2 in the past few years.
The results show that the uptake by the North Atlantic halved between the mid-90s, when data was first gathered, and 2002-05.
“Such large changes are a tremendous surprise. We expected that the uptake would change only slowly because of the ocean’s great mass,” said Dr Schuster.
“We are cautious about attributing this exclusively to human-caused climate change because this uptake has never been measured before, so we have no baseline to compare our results to. Perhaps the ocean uptake is subject to natural ups and downs and it will recover again.”
But the direction of the change was worrying, she added, and there were some grounds for believing that a ‘saturation’ of the ocean sink would start to occur.
“The speed and size of the change show that we cannot take for granted the ocean sink for the carbon dioxide. Perhaps this is partly a natural oscillation or perhaps it is a response to the recent rapid climate warming. In either case we now know that the sink can change quickly and we need to continue to monitor the ocean uptake,” said Prof Watson.
Media Contact
More Information:
http://www.agu.org/journals/jcAll latest news from the category: Ecology, The Environment and Conservation
This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.
innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.
Newest articles
Largest magnetic anisotropy of a molecule measured at BESSY II
At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a…
Breaking boundaries: Researchers isolate quantum coherence in classical light systems
LSU quantum researchers uncover hidden quantum behaviors within classical light, which could make quantum technologies robust. Understanding the boundary between classical and quantum physics has long been a central question…
MRI-first strategy for prostate cancer detection proves to be safe
Active monitoring is a sufficiently safe option when prostate MRI findings are negative. There are several strategies for the early detection of prostate cancer. The first step is often a…