Facing the Multicore-Challenge

The prevalence of multicore technologies has brought ubiquitous parallelism and a huge theoretical potential for compute-intensive tasks. In theory, advancements in technology bring us closer to the solution of the Grand Challenges in modern computing. In practice however, it is hard to achieve maximal throughput in the results and to exploit all available capabilities.

Due to the inevitable paradigm shift towards multicore technologies, parallelism is now affecting all kinds of software development processes – from large-scale numerical simulation to desktop commodity applications. And parallelism is no longer restricted to well-balanced systems built of homogeneous nodes. In recent systems parallelism spreads over many systems levels including nodes, processors, cores, threads, registers, SIMD and vector units. Moreover, heterogeneity of the systems is growing on the node as well as on the chip level.

Most applications and algorithms are not yet ready to utilize available capabilities and a tremendous effort is required to close the gap. Different technologies and processing models, non-adjusted interfaces, and incomplete tool chains complicate holistic programming approaches and impede programmer's productivity. On the other hand, resource contention, data conflicts and hardware bottlenecks keep performance away from theoretical peak.

At the current state of the art in technologies and methodologies an interdisciplinary approach is required to tackle the obstacles in multicore computing.

Only a comprehensive approach with contributions from computer science, applied mathematics, high performance computing, and engineering disciplines can face the multicore challenge. Compute- and memory-intensive applications can only benefit from the full hardware potential if all features on all system levels are taken into account in a holistic approach.

This conference aims to combine new aspects of multicore microprocessor technologies, parallel applications, numerical simulation, software development and tools. The primary goal is to bring together young researchers working in related fields. Contributions are welcome from all participating disciplines.

The Heidelberg Academy of Sciences and Humanities was established in 1909 to carry on in the tradition of the Kurpfälzische Akademie (Academy of the Electoral Palatinate) founded in 1763 by Elector Carl Theodor. Throughout its existence the Heidelberg Academy has upheld its allegiance to the purpose for which it was originally constituted: assembling the outstanding scholars and scientists of the state of Baden-Wuerttemberg for cross-disciplinary exchange and independent research. This accords with its status as the Academy of Sciences and Humanities for the state of Baden-Wuerttemberg.

By its membership in the Union of the German Academies of Sciences and Humanities it is associated with the six other German state Academies located in Berlin, Göttingen, Munich, Leipzig, Mainz and Düsseldorf. The Baden-Wuerttemberg State Academy in Heidelberg is both a scholarly society in the traditional sense of the term and a modern, extra-university research institution. The Academy organises scholarly and scientific symposia and public lecture series. At the same time it has demonstrated its dedication to the encouragement of young scholars and scientists by the establishment of a Junior Academy and the award of research prizes. The work of the Academy concentrates on long-term basic research.

Date: March 17 to 19, 2010
Venue: Akademie der Wissenschaften, Karlstraße 4, Heidelberg
Beginning: March 17, 2010, 13:30 h
Conference language is English.
Contact:
Jun.-Prof. Dr. Jan-Philipp Weiß
Karlsruhe Institute of Technology
Fritz-Erler-Strasse 23
76133 Karlsruhe
Tel. +49(0) 721 | 608-7406
Fax +49(0) 721 | 608-4178
info@multicore-challenge.org

Media Contact

Dr. Herbert von Bose idw

All latest news from the category: Event News

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…