A novel computational model — how Parkinson's medications affect learning and attention
As reported in a forthcoming article in the Journal of Cognitive Neuroscience, http://www.mitpressjournals.org/doi/pdf/10.1162/jocn.2010.21420, a new computational model, developed by Drs. Ahmed Moustafa and Mark Gluck, at the Center for Molecular and Behavioral Neuroscience at Rutgers University, Newark, has shown how Parkinson’s disease affects attentional performance during learning.
The same model also shows that dopamine medications enhance attentional performance in Parkinson’s patients in agreement with past observations. Future lab experiments with Parkinson’s patients will be conducted by Moustafa and Mark Gluck to test further model predictions.
Parkinson's is a disease that mainly affects dopamine levels in a brain area known as the basal ganglia, which is important for motor control. Hence, damage to this area leads to movement disorders, including shaking and difficulty moving–key symptoms of Parkinson's disease.
Over the past two decades, it became known to neurologists and experimental neuroscientists that Parkinson’s disease also affects non-motor functions, including memory, learning, and attention. Impairment in these processes affect the quality of life of the patients, thus, understanding the neural basis of motor and non-motor dysfunction in Parkinson’s disease is equally important.
Dopamine is also projected to other parts of the brain, including the prefrontal cortex, an area important for higher-level thinking, decision making, and attention. Dopamine projected to the prefrontal cortex is also reduced in Parkinson’s disease, as reported in many experimental studies with humans and animal models of Parkinson’s disease.
According to Moustafa and Gluck, until recently, existing computational models of Parkinson’s disease ignored any role played by dopamine in the prefrontal cortex. Moustafa and Gluck have designed a new computational model that shows how dopamine in the prefrontal cortex is important for attentional performance, and how dysfunction of dopamine in the prefrontal cortex can explain many of the non-motor deficits seen in Parkinson’s patients.
“Computational models are increasingly being used in the neurosciences and neurology to understand how neurological disorders affect brain and behavior,” said Moustafa. “This relatively new field—known as computational neuroscience— is promising to aid in designing new pharmacological and surgical intervention tools to treat neurological and psychiatric diseases.”
This research was funded by the National Institute for Neurological Disorders and Stroke (NINDS) and by a grant from the Bachman-Strauss Foundation's Dekker Foundation Fund.
For more information on Moustafa and Gluck’s research, and on the Center for Molecular and Behavioral Neuroscience at Rutgers University, Newark, visit http://cmbn.rutgers.edu/ or contact gluck@pavlov.rutgers.edu and ahmedhalimo@gmail.com.
Contact: Helen Paxton
973-353-5262
E-mail: paxton@andromeda.rutgers.edu
Media Contact
More Information:
http://www.rutgers.eduAll latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
How marine worms regenerate lost body parts
The return of cells to a stem cell-like state as the key to regeneration. Many living organisms are able to regenerate damaged or lost tissue, but why some are particularly…
Nano-scale molecular detective
New on-chip device uses exotic light rays in 2D material to detect molecules. Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature…
Novel CAR T-cell therapy
… demonstrates efficacy and safety in preclinical models of HER2-positive solid tumors. The p95HER2 protein is found expressed in one third of HER2+ tumors, which represent 4% of all tumors….