Effective methods for detecting early signs of tremor

“The aim was to investigate whether quantitative measurement methods, in other words sensitive computer-based methods, could be used to detect small changes in tremor or other motor functions resulting from exposure to low levels of neurotoxic metals,” says Gunilla Wastensson, doctoral student at the Sahlgrenska Academy’s Occupational and Environmental Medicine Unit.

The thesis looked at former welders from the Gothenburg shipyards, who had been exposed to manganese from welding fumes. When tested for fine motor skills – in other words manual dexterity and motor speed – the welders came out worse than other shipyard workers.

“We interpret this as a residual effect of manganese exposure from the welding fumes, even though they’d stopped welding 18 years ago on average,” says Wastensson.

A second study looked into whether quantitative measurement methods can be used to follow up the treatment of certain neurological disorders, such as essential tremor, which is a common neurological complaint where individuals are affected by involuntary shaking of the hands.

“Some essential tremor patients have such shaky hands that they find it hard to manage day-to-day activities,” says Wastensson. “Such cases can be treated with a neurosurgical intervention known as deep brain stimulation.”

For optimum effect, the stimulator must be programmed, which takes time and requires specially trained staff. Essential tremor patients treated with deep brain stimulation were both examined by an experienced neurologist who estimated the degree of tremor on a scale of 0 to 4, and assessed using quantitative measurement methods. The effect of the stimulation was very prominent, and the quantitative measurement methods were slightly more sensitive at detecting changes, particularly where the tremor was less pronounced.

“The results show that quantitative measurement methods are more sensitive than clinical assessments, and that they can be used to detect small changes in tremor or other motor functions caused by neurotoxic metals,” says Wastensson.

She also believes that quantitative measurement methods could be used to complement clinical assessments when determining the impact of treatments for various neurological disorders.

METAL POISONING
It has long been known that metals such as mercury and manganese can damage the nervous system. Descriptions of the typical symptoms of mercury poisoning can be found as far back as the 16th century for hatters in the UK who used mercury nitrate in the production of felt hats – hence the term “mad hatters”. Inhalation of high doses of manganese for extended periods,

in connection with welding for example, can cause a clinical picture that resembles Parkinson’s disease, “manganism”. Improvements in working conditions have resulted in lower quantities of these substances in the workplace.

For more information, please contact:
Gunilla Wastensson, PhD student at the Sahlgrenska Academy,
tel. +46 31 786 28 94
+46 31 786 28 94
e-mail gunilla.wastensson@amm.gu.se
Doctoral thesis for the degree of PhD (Medicine) at the Occupational and Environmental Medicine Unit, Department of Internal Medicine, Sahlgrenska Academy.

Title of thesis: Quantitative methods for evaluation of tremor and neuromotor function: application in workers exposed to neurotoxic metals and patients with essential tremor.

Download the thesis from: http://hdl.handle.net/2077/23133
The thesis has been successfully defended.

Media Contact

Helena Aaberg idw

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…