Gene scissors switch off with built-in timer
Bonn researchers clarify self-regulation of the immune response in the CRISPR bacterial defense system: CRISPR gene scissors, as new tools of molecular biology, have their origin in an ancient bacterial immune system. But once a virus attack has been successfully overcome, the cell has to recover. Researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with researchers from the Institut Pasteur in France, have discovered a timer integrated into the gene scissors that enables the gene scissors to switch themselves off. The results of the study have been published in the renowned journal “Nucleic Acids Research”.
Some bacteria have developed CRISPR gene scissors in response to attacks by so-called phages. This bacterial immune system recognizes the phage genetic material, destroys it and thus protects against viral attacks. When detecting phages, the type III variants of these immune systems produce messenger substances with cyclic oligoadenylates (cOAs), which the bacteria use to switch on a complex emergency plan. This ensures that a virus can be fought optimally and on a broad front. A research team led by PD Dr. Gregor Hagelueken from the Institute of Structural Biology at the UKB, who is a member of the Transdisciplinary Research Area (TRA) “Life & Health” and the Cluster of Excellence ImmunoSensation2 at the University of Bonn, discovered that the messenger substance cA4 produced by the gene scissors binds to a protein called CalpL. The protein scissors activated in this way trigger a signaling cascade that helps the cell to survive the viral attack.
The Bonn researchers had thus uncovered a completely new aspect of CRISPR systems, which can be easily reprogrammed for biotechnological and medical purposes. “These CRISPR-activated protein scissors that we discovered are a brand new tool in the toolbox of molecular biology,” says Niels Schneberger, a doctoral student at the University of Bonn’s Institute of Structural Biology at the UKB, who played a key role in the discovery of the CalpL protein.
Cellular recovery by limiting the antiviral response
“After a viral attack, however, it is crucial to eliminate the remaining cyclic oligoadenylates in order to terminate the antiviral reaction and return the cell to its normal state,” says Sophie Binder, who shares the first authorship of the study with Schneberger and is also a doctoral student at the University of Bonn’s Institute of Structural Biology at the UKB. In cooperation with researchers from the Institut Pasteur in Paris and the Kekulé Institute for Organic Chemistry and Biochemistry at the University of Bonn, the Bonn researchers have now been able to show that the so-called SAVED domain of the CalpL protease has a ring nuclease activity that cleaves cA4. “The protein therefore contains something like a molecular timer that switches off the immune reaction. By breaking down cA4 into linear fragments, the duration of the immune response is regulated, which enables a controlled return of the cell to normal conditions,” says Binder.
A switchable protease such as CalpL is also of great interest for biotechnological applications. For example, it could be used as a molecular sensor. “The newly discovered ring nuclease activity is actually a disadvantage for such purposes,” says PD Dr. Hagelueken. “However, in our study, we were also able to show how ring nuclease activity can be specifically inhibited so that the sensor does not switch itself off again.”
Funding and participating institutions:
The project was funded by the German Research Foundation (DFG) and the Open Access Publication Fund of the University of Bonn. In addition to the Institute of Structural Biology at the UKB, the Kekulé Institute of Organic Chemistry and Biochemistry at the University of Bonn and the Institut Pasteur, Paris, France, are also involved in the study.
Publication: Sophie C. Binder, Niels Schneberger, Marianne Engeser, Matthias Geyer, Christophe Rouillon, Gregor Hagelueken: The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease; Nucleic Acids Research,
DOI: 10.1093/nar/gkae676/7737999
Link to publication: https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae676/7737999
Press contact:
Dr. Inka Väth
Deputy Press Officer at the University Hospital Bonn (UKB)
Communications and Media Office at Bonn University Hospital
Phone: (+49) 228 287-10596
E-mail: inka.vaeth@ukbonn.de
About Bonn University Hospital: The UKB treats around 500,000 patients per year, employs around 9,500 staff and has total assets of 1.8 billion euros. In addition to the 3,500 medical and dental students, 550 people are trained in numerous healthcare professions each year. The UKB is ranked first among university hospitals (UK) in NRW in the Focus Clinic List, had over 100 million third-party funds in research in 2023 and has the second highest case mix index (case severity) in Germany. The F.A.Z. Institute awarded the UKB first place among university hospitals in the category “Germany’s training champions 2024”.
Wissenschaftliche Ansprechpartner:
PD Dr. Gregor Hagelueken
Institute of Structural Biology
Bonn University Hospital
ImmunoSensation2 &TRA “Life & Health”, University of Bonn
Phone: +49 228 287-51200
E-mail: hagelueken@uni-bonn.de
Originalpublikation:
Sophie C. Binder, Niels Schneberger, Marianne Engeser, Matthias Geyer, Christophe Rouillon, Gregor Hagelueken: The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease; Nucleic Acids Research,
DOI: 10.1093/nar/gkae676/7737999
Weitere Informationen:
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae676/7737999 Publication
Media Contact
All latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…