New target for Alzheimer’s therapies found
DZNE researchers discover link between the protein medin and Alzheimer’s disease.
The protein medin is deposited in the blood vessels of the brains of Alzheimer’s patients along with the protein amyloid-β. Researchers from DZNE have discovered this so-called co-aggregation. They have now published their observation in the renowned journal Nature. “Medin has been known for over 20 years, but its influence on diseases was previously underestimated. We were able to show that pathological changes in the blood vessels of Alzheimer’s patients are significantly enhanced by medin,” says Dr. Jonas Neher from the Tübingen site of Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), who led the study. The Hertie Institute for Clinical Brain Research in Tübingen, the University of Tübingen and several international institutions and cooperation partners were also involved in this long-term project.
Medin belongs to the group of amyloids. Of these proteins, amyloid-β is best known because it clumps together in the brains of Alzheimer’s patients. These aggregates then deposit both as so-called plaques directly in the brain tissue, but also in its blood vessels, thereby damaging the nerve cells and the blood vessels, respectively. But while many studies have focused on amyloid-β, medin has not been a focus of interest. “There was little evidence of pathology, that is, of a clinically striking finding associated with medin – and that is often the prerequisite for a more in-depth study of an amyloid,” Jonas Neher explains.
However, medin is actually found in the blood vessels of almost everybody over 50 years of age, making it the most common amyloid known. With his team, Jonas Neher originally found that medin even develops in aging mice, and reported this discovery two years ago in the scientific journal PNAS. The older the mice get, the more medin accumulates in the blood vessels of their brains, was the finding at the time. What’s more, when the brain becomes active and triggers an increase in blood supply, vessels with medin deposits expand more slowly than those without medin. This ability of blood vessels to expand, however, is important to optimally supply the brain with oxygen and nutrients.
For their latest results, the researchers built on this foundation and looked specifically at Alzheimer’s disease. First, they were able to show in Alzheimer’s mouse models that medin accumulates even more strongly in the brain’s blood vessels if amyloid-β deposits are also present. Importantly, these findings were confirmed when brain tissue from organ donors with Alzheimer’s dementia was analysed. However, when mice were genetically modified to prevent medin formation, significantly fewer amyloid-β deposits developed, and as a result, less damage to blood vessels occurred.
“There are only a handful of research groups worldwide working on medin at all,” says Jonas Neher. Most recently, a study from the U.S. reported that medin levels may increase in Alzheimer’s patients. However, it remained unclear whether this increase is merely a consequence of the disease or whether it is one of the causes. “We have now been able to show through many experiments that medin actually promotes vascular pathology in Alzheimer’s models,” Neher said. So medin deposits are indeed a cause of blood vessel damage. “And this indicates that medin is one of the causes of the disease,” Neher said.
In their studies, the researchers stained tissue sections from both mice and Alzheimer’s patients in such a way that specific proteins become visible. This allowed them to show that medin and amyloid-β are deposited together in blood vessels of the brain – co-localization is the technical term for this. In a next step, they were able to prove that these two amyloids also co-aggregate – that is, form mixed deposits. “Amazingly, medin interacts directly with amyloid-β and promotes its aggregation – this was completely unknown,” Jonas Neher summarizes the results.
It is precisely from this insight that the researchers draw hope for the development of a new treatment. “Medin could be a therapeutic target to prevent vascular damage and cognitive decline resulting from amyloid accumulation in the blood vessels of the brain,” they conclude. It is undisputed among experts that in addition to amyloid-β aggregates in brain tissue, the development of Alzheimer’s disease is also promoted by vascular alterations – that is, reduced function or damage to blood vessels. Therefore, treatments that target not only plaques but also affected blood vessels could help patients.
In a next step, it will now be necessary to determine if medin aggregates can be removed therapeutically and whether this intervention actually has an effect on cognitive performance. The scientists first want to test this in mouse models, because these reflect the pathological changes in Alzheimer’s patients very well.
About the Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE (German Center for Neurodegenerative Diseases): The DZNE is a research institute funded by the German federal and state governments, comprising ten sites across Germany. It is dedicated to diseases of the brain and nervous system, such as Alzheimer’s, Parkinson’s, and ALS, which are associated with dementia, movement disorders and other serious health impairments. To date, there are no cures for these diseases, which represent an enormous burden for countless affected individuals, their families, and the healthcare system. The aim of DZNE is to develop novel strategies for prevention, diagnosis, care, as well as treatment, and to transfer them into practice. To this end, DZNE cooperates with universities, university hospitals, research centers and other institutions in Germany and abroad. The institute is a member of the Helmholtz Association and belongs to the German Centers for Health Research. Website: https://www.dzne.de/en
Originalpublikation:
Medin co-aggregates with vascular amyloid-β in mouse models and Alzheimer patients, Jessica Wagner et. al., Nature (2022), DOI: 10.1038/s41586-022-05440-3, URL: https://www.nature.com/articles/s41586-022-05440-3
Weitere Informationen:
https://www.dzne.de/aktuelles/pressemitteilungen/presse/neuer-ansatzpunkt-fuer-a… German Version
Media Contact
All latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…