NIH takes step to assess any possible risk associated with low-dose radiation exposure

There is much controversy surrounding diagnostic medical radiation exposure. “One widely publicized appraisal of medical radiation exposure suggested that about 1.5 to 2 percent of all cancers in the USA might be caused by the clinical use of CT alone,” said David A. Bluemke, MD, lead author of the article and director of Radiology and Imaging Sciences at the NIH Clinical Center.

“Since there is no epidemiologic data directly relating CT scanning to cancer deaths, scientific assessment must instead rely on the relationship between radiation exposure and death rates from Japanese atomic bomb survivors. While the legitimacy of this approach remains debated, radiologists as well as clinicians may rightfully be confused by the ongoing controversy. Patients seeking medical help may legitimately question the rationale of, and any risks from, diagnostic radiology tests,” said Bluemke.

Radiology and nuclear medicine at the NIH Clinical Center have developed a radiation reporting policy that will be instituted in cooperation with major equipment vendors, beginning with exposures from CT and PET/CT. “All vendors who sell imaging equipment to Radiology and Imaging Sciences at the NIH Clinical Center will be required to provide a routine means for radiation dose exposure to be recorded in the electronic medical record. This requirement will allow cataloging of radiation exposures from these medical tests,” said Bluemke. In addition, radiology at NIH will also require that vendors ensure that radiation exposure can be tracked by the patient in their own personal health record. This approach is consistent with the American College of Radiology's and Radiological Society of North America's stated recommendation, that “patients should keep a record of their X-ray history.”

“The cancer risk from low-dose medical radiation tests is largely unknown. Yet it is clear that the U.S. population is increasingly being exposed to more diagnostic-test-derived ionizing radiation than in the past,” said Bluemke.

“While these steps themselves are not sufficient to allow population-based assessment of cancer risk from low-dose radiation, they are nonetheless necessary to begin a data set for this determination. The accumulation of medical testing doses of hundreds of thousands of individuals in the United States over many years will ultimately be necessary. We encourage all medical imaging facilities to include similar requirements for radiation-dose-reporting outputs from the manufacturers of radiation-producing medical equipment,” said Bluemke.

The February issue of JACR is an important resource for radiology and nuclear medicine professionals as well as students seeking clinical and educational improvement.

For more information about JACR, please visit www.jacr.org.

To receive an electronic copy of an article appearing in JACR or to set up an interview with a JACR author or another ACR member, please contact Heather Curry at 703-390-9822 or hcurry@acr-arrs.org.

Media Contact

Heather Curry EurekAlert!

More Information:

http://www.acr-arrs.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Scientists transform blood into regenerative materials

… paving the way for personalized, blood-based, 3D-printed implants. Scientists have created a new ‘biocooperative’ material based on blood, which has shown to successfully repair bones, paving the way for…

A new experimental infection model in flies

…offers a fast and cost-effective way to test drugs. Researchers at the Germans Trias i Pujol Research Institute and Hospital have reinforced their leading role in infectious disease research by…

Material developed with novel stretching properties

KIT researchers produce metamaterial with different extension and compression properties than conventional materials. With this material, the working group headed by Professor Martin Wegener at KIT’s Institute of Applied Physics…