Orthopedic Clinic of JGU Medical Center deploys new system for therapy of metastatic spinal tumors

The Orthopedic Clinic and Policlinic at the University Medical Center of Johannes Gutenberg University Mainz (JGU), Germany has recently deployed a new system for the treatment of spinal tumors for the first time.

This treatment is a combination of the so-called radiofrequency ablation, which uses the heat energy of radio frequency waves to ablate and destroy tumors, and a subsequent kyphoplasty, by which the spine is stabilized through the injection of bone cement as filler material. A recently started single-center study involving 10 evaluable patients suffering from painful metastatic spinal tumors is now expected to provide information about the efficacy of this method.

“The results of this trial will provide critical information about the safety and efficacy of minimally invasive targeted radiofrequency ablation to treat vertebral metastates,” says Professor Dr med Andreas Kurth, Director of the Orthopedic Clinic at the University Medical Center of Johannes Gutenberg University Mainz. “We are confident that this advanced method employed for tumor reduction and simultaneous stabilization of the spine through bone-sparing kyphoplasty will minimize the cancer patient's severe discomfort while stabilizing the vertebra.”

The Spinal Tumor Ablation with Radiofrequency (STAR)TM System of DFINE, Inc., which was jointly developed with the Orthopedic Clinic of Mainz University Medical Center, is already FDA-approved as a device permitting minimally invasive targeted tumor necrosis of metastatic spinal tumors. Following ablation with the STAR System, vertebra(e) will be stabilized with ultra-high viscosity cement. This minimally invasive procedure generally takes about an hour. The data to be perceived from the Evaluation of Combined RF Ablation and Cement Delivery in Painful Tumors of the Spine Trial (AbCT) are to support the filing for Conformité Européenne (CE) Mark certification in 2012.

In the United States alone, 13 percent (190,000 cases) of the 1.5 million new cancer cases diagnosed annually will develop spinal mestasis. Beyond narcotic administration and traditional pain management, the primary modality for treating spinal metastases is external beam radiation. While this represents the current standard of care for treating metastatic cancer, pain relief often requires multiple treatments and weeks to be effective. In addition, radiation therapy often requires that patients suspend chemotherapy treatment of the primary cancer due to cumulative toxicity. Using the DFINE minimally invasive procedure to treat painful metastatic spinal lesions provides immediate pain relief and an improved quality of life. There is also minimal, if any, delay in systemic, curative therapy of the primary cancer therapy – a significant benefit for the patient.

The STARTM System of DFINE incorporates a unique bipolar navigational instrument, which offers unparalleled control and enables the physician to overcome many of the technical challenges which have limited targeted ablation in boney tissues to date. “Due to the critical anatomy in the spine and the invasive nature of conventional surgical procedures to treat spinal metastases, we believe DFINE's minimally invasive therapy that allows targeted delivery of radiofrequency energy for ablation of tumors may provide the fastest and most effective relief from the painful effects of spinal metastases, and thereby represents a significant advance in the patient's treatment,” states Kurth.

About the University Medical Center of Johannes Gutenberg University Mainz, Germany
The University Medical Center of Johannes Gutenberg University Mainz (JGU) is the only institution of its kind in the German state of Rhineland-Palatinate. The Orthopedic University Clinic and Policlinic is one of the oldest and most-respected centers in Germany, focusing on the research of orthopedic oncology and cancer of the musculoskeletal system. Teaching and research are closely linked with medical care facilities. Some 3,500 students are at any one time attending courses on medicine and dentistry at Mainz.

For further information, please visit www.unimedizin-mainz.de.

About DFINE, Inc.
DFINE is dedicated to relieving pain and improving the quality of life for patients suffering from vertebral pathologies through innovative, minimally invasive therapies. DFINE’s devices are built upon an extensible radio frequency (RF) platform that presently covers two procedural applications. The first application, the StabiliT® Vertebral Augmentation System and StabiliT® ER2 Bone Cement, harnesses the power of radiofrequency energy to repair fractured vertebrae. The company has received FDA 510(k) clearance for a second application, the STARTM Ablation System, for the treatment of spinal tumors and plans to submit for CE-Mark approval following completion of the AbCT Study at Mainz University Medical Center. The STAR system will be commercially available in the United States later this year. DFINE is based in San Jose, Calif. and is privately held.

For more information, visit www.dfineinc.com

Media Contact

Petra Giegerich idw

More Information:

http://www.unimedizin-mainz.de

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Breakthrough in magnetism that could transform quantum computing and superconductors

Researchers discover new magnetic and electronic properties in kagome magnet thin films. A discovery by Rice University physicists and collaborators is unlocking a new understanding of magnetism and electronic interactions…

NASA to launch innovative solar coronagraph to Space Station

NASA’s Coronal Diagnostic Experiment (CODEX) is ready to launch to the International Space Station to reveal new details about the solar wind including its origin and its evolution. Launching in…

Boosting efficiency in mining with AI and automation

“Doing instead of procrastinating”. This is the AI strategy presented by Prof. Constantin Haefner, Director of the Fraunhofer Institute for Laser Technology ILT, at the “AKL’24 – International Laser Technology…