Possible trigger of Crohn’s disease discovered
Dysfunctional mitochondria disrupt the gut microbiome.
Disruptions of mitochondrial functions have a fundamental influence on Crohn’s disease. This connection has now been demonstrated by researchers at the Technical University of Munich (TUM). They showed that defective mitochondria in mice trigger symptoms of chronic intestinal inflammation and influence the microbiome.
Typical symptoms of Crohn’s disease include chronic diarrhea, abdominal pain and fever. Although the causes of Crohn’s disease are not yet fully understood, it has been known for some years that changes in the gut microbiome (that is to say the community of microbes that live in the intestinal tract) are associated with inflammatory diseases. Some researchers see these changes – the causes of which remain unknown – as the trigger of the disease.
A team working with Dirk Haller, Chair of Nutrition and Immunology and Director of the Institute for Food and Health at TUM (ZIEL), has searched for the causes of this changes in the microbiome and investigated the interplay of the microbiome, the intestinal epithelium and mitochondria. The intestinal epithelium is a cell layer that lines the inside of the intestine, absorbs nutrients and fights off pathogens. Mitochondria are small cellular structures that convert nutrients into energy and therefore influence the cellular metabolism and the ability of cells to perform their functions.
Mitochondria disruption leads to changes in the microbiome
Dirk Haller and his team have been pursuing the hypothesis that mitochondria not only serve as the power plants of cells, but also interact with the microbiome. In addition, previous research has shown that the intestinal epithelium in patients with chronic intestinal inflammation exhibit certain stress markers indicating possible mitochondrial malfunction.
For their study the researchers therefore disrupted mitochondrial function in mice by deleting a gene segment responsible for producing the protein Hsp60. This protein is essential to the ability of mitochondria to perform their tasks. The intervention triggered various processes in the gut. For one, tissue injuries were identified in the intestinal epithelium similar to those seen in Crohn’s disease patients. Changes were also seen at the level of gene activation that are typical of some stages of the disease. In addition – an essential development for the question investigated by the team – the microbiome responded to the disrupted mitochondria by changing its composition.
As a result, Dirk Haller and his team were able to demonstrate for the first time that disruptions to mitochondria are causally related to tissue damage in the intestines and also trigger disease-related changes in the microbiome.
Prospects for new drugs
This insight may prove important to persons with inflammatory conditions because it presents potential approaches for new treatments. Currently, treatment is limited to alleviating the symptoms of the disease with anti-inflammatory medications. “The big hope is to find active ingredients that would restore the functionality of disrupted mitochondria, in other words to repair them in a sense. This would limit intestinal damage as a trigger for chronic inflammation processes”, says Dirk Haller. “Our results suggest that drugs that act on mitochondrial pathways or address the connections between the microbiome and mitochondria could be a key aspect of better treatments.”
Wissenschaftliche Ansprechpartner:
Subject matter expert:
Prof. Dr. Dirk Haller
Technical University of Munich
Chair of Nutrition and Immunology
Tel.: +49 8161-71 2026
dirk.haller@tum.de
https://www.mls.ls.tum.de/nutrim/startseite/
TUM Corporate Communications Center contact:
Anja Lapac
Media Relations Officer
Tel.: +49 8161 71-5403
presse@tum.de
www.tum.de
Originalpublikation:
Urbauer, E., Aguanno, D., Mindermann, N. et al.: Mitochondrial perturbation in the intestine causes microbiota-dependent injury and gene signatures discriminative of inflammatory disease. Cell Host & Microbe (2024), Volume 32, Issue 8. DOI: 10.1016/j.chom.2024.06.013
Weitere Informationen:
https://www.sfb.tum.de/1371/microbiome-signatures/ The study was carried out in the Collaborative Research Center “Microbiome Signatures” (SFB 1371).
https://mediatum.ub.tum.de/1756487 Photos for download
Media Contact
All latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…