Medical physicist treats spinal tumors faster with new procedure
Working together at Henry Ford Hospital in Detroit, medical physicists and clinicians have developed a new procedure that treats spinal tumors and relieves patient discomfort faster that current treatments. Called intensity-modulated spinal radiosurgery, this technique pinpoints a tumors location to deliver a powerful dose of radiation that avoids healthy areas of the spinal cord, kidneys, and lungs. This research was presented last month at the annual meeting of the American Association for Physicists in Medicine in Montreal.
“Each year roughly 100,000 people are diagnosed with spinal tumors in the U.S.,” says Fang-Fang Yin, a medical physicist at Henry Ford Hospital Systems, “Most spinal tumors are located very close to the spinal cord, which is sensitive to radiation.”
Because the spinal cord is so vulnerable, current spinal tumor treatments such as conventional radiotherapy and decompressive surgery require multiple lower does of radiation to protect the spinal cord while treating the tumor.
To treat the tumor more effectively, the researchers use “intensity modulated” radiation, which means they vary the intensity of the radiation over time. The intensity-modulated radiation, delivered from various angles, provides a maximum dose to a specific 3-D region of the tumor while minimizing exposure to healthy tissue in the spinal cord.
Another component of the procedure is an image-guided technique that helps fine-tune the intensity-modulated technique for more precise treatment.
“Real-time imaging techniques, including the use of infrared cameras, video cameras, and diagnostic x-ray imaging devices are used to locate the tumor location and deliver a high dose of radiation,” says Yin, “During the last 14 months, 51 patients have been treated with spinal radiosurgery.”
Patients often have to wait several weeks after conventional treatments to notice relief from their symptoms, but with spinal radiosurgery, patients notice relief in two weeks.
Yin hopes that spinal radiosurgery will supplement conventional radiation therapy and help treat recurrent spinal tumors following surgery or radiation therapy.
For more information contact:
Fang-Fang Yin, Ph.D.
Medical Physicist
Henry Ford Hospital Systems
Detroit, MI
313-916-1021
fyin1@hfhs.org
Media Contact
More Information:
http://www.aip.org/All latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
A ‘language’ for ML models to predict nanopore properties
A large number of 2D materials like graphene can have nanopores – small holes formed by missing atoms through which foreign substances can pass. The properties of these nanopores dictate many…
Clinically validated, wearable ultrasound patch
… for continuous blood pressure monitoring. A team of researchers at the University of California San Diego has developed a new and improved wearable ultrasound patch for continuous and noninvasive…
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….