Climate and cholera: an increasingly important link

The link between climate and cholera, a serious health problem in many parts of the world, has become stronger in recent decades, say researchers from the University of Michigan, the University of Barcelona and the International Center for Diarrhoeal Disease Research in Bangladesh.

Their research will be published in the online version of the Proceedings of the National Academy of Sciences this week.

In a previous study published in the journal Science, the researchers found evidence that El Nino-Southern Oscillation (ENSO), a major source of climate variability from year to year, influences cycles of cholera. In that work, they looked only at climate and disease data from Bangladesh for the past two decades. In the new research, they compared those results with data from Bangladesh for the periods 1893-1920 and 1920-1940 to see whether the coupling between climate variability and cholera cycles has become stronger in recent decades. Their examination of the data, which relied on a suite of techniques called time series analysis, suggests that it has.

“What is new in this work is not showing that ENSO plays a role in the variability of cholera, but that the role of ENSO has intensified,” says Mercedes Pascual, an assistant professor in the department of Ecology and Evolutionary Biology at the University of Michigan. In addition, the link is strongest following ENSO events, with cholera increasing after warm events and decreasing after cold events. In the years between events, the climate-cholera connection breaks down.

Scientists who study climate change predict that ENSO will become stronger and more variable in coming years under a global warming scenario, so understanding how its connection to human disease changes will be increasingly important, says Pascual.

Cholera, an intestinal infection with symptoms that may include diarrhea, vomiting and leg cramps, is caused by the bacterium Vibrio cholerae. People usually get the disease by eating or drinking contaminated food or water.

The greater role of ENSO in cholera dynamics probably reflects known changes in ENSO itself, the researchers believe. Since the late 1970s, there has been a tendency toward warmer ENSO events, in conjunction with global warming. Because the disease-causing bacterium lives in brackish water and thrives in warm temperatures, it may be particularly sensitive to climate patterns. People also may be more likely to come in contact with contaminated water in warmer weather.

Other diseases, such as malaria and dengue, may be similarly affected by climate variability, says Pascual. But because other factors, such as patterns of immunity, also lead to cycles in disease dynamics, Pascual and her colleagues are working on methods to sort out the relative roles of climate and intrinsic factors such as temporary immunity.

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853
E-mail: rossflan@umich.edu

Media Contact

Nancy Ross-Flanigan EurekAlert!

More Information:

http://www.umich.edu/~newsinfo

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…