OHSU researchers discover toxicity risks for widely used chemicals

Research at Oregon Health & Science University (OHSU) has revealed that certain chemical ingredients of gasoline, jet fuel and other solvents may pose a greater health hazard than first thought. Scientists at the OHSU Center for Research on Occupational and Environmental Toxicology (CROET) have shown that a benzene derivative damages the nervous system. In fact, the substance is much more active than non-benzene analogs already known to cause peripheral nerve damage (loss of limb sensation and muscle weakness) in solvent-exposed workers. The research team was led by Mohammad Sabri, Ph.D., and Peter Spencer, Ph.D., F.R.C. Path., of OHSU. The conclusions of the research are printed in the September 2002 issue of the Journal of Toxicology and Applied Pharmacology.

“Previously, researchers believed that benzene derivatives were unable to damage the nervous system,” said Spencer. “The substance we studied – 1,2-diacetylbenzene – has a ring-like (aromatic) chemical structure in contrast to the straight-chain (aliphatic) solvents that are well established causes of occupation-related nerve damage. Our data suggest the aromatic substance actually has a much higher neurotoxic potency. In addition, the new findings raise the possibility that related aromatic chemicals may also damage the nervous system. We believe these substances should be tested for neurotoxicity, and occupational exposures should be regulated to prevent illness among workers who come in contact with these chemicals.”

One of these related aromatic chemicals, a substance known as Musk tetralin, was used until the 1980s by the fragrance industry to hide product odor in soaps and fragrances. The industry voluntarily withdrew Musk tetralin worldwide after Spencer and fellow researchers demonstrated the substance was neurotoxic. Because aromatic hydrocarbons have been used in such large quantities by the public and in commerce, the chemicals are now common soil and water contaminants.

“One surprising property of these neurotoxic substances, including Musk tetralin and 1,2-diacetylbenzene, is their ability to cause blue discoloration of tissue and urine to turn green. Perhaps this property could be used as a biological marker of exposure to these hazardous substances,” said Sabri. “We hope to develop a method by which urine or other fluids can be tested for the presence of the blue pigment. Since urine discoloration occurs before neurological disease, it may serve to help prevent onset of disease among those exposed to these substances in the workplace or at contaminated sites.”

The research was conducted through the OHSU/CROET Superfund Basic Research Program and NeuroToxicogenomics Research Center, both funded by the National Institute for Environmental Health Sciences, a component of the National Institutes of Health. Leadership of both of these research centers resides in CROET.

Specifics:
Peter Spencer, Ph.D., F.R.C.Path., senior scientist and director, CROET; principal investigator, NIEHS-supported Superfund Basic Research Center; principal investigator, NIEHS-supported Neurotoxicogenomics and Child Health Research Center; and professor of neurology, OHSU School of Medicine

Mohammad I. Sabri, Ph.D., associate professor of neurology, OHSU School of Medicine; senior investigator, CROET For a complete listing of OHSU press releases, visit www.ohsu.edu/news

Media Contact

Jim Newman EurekAlert!

More Information:

http://www.ohsu.edu/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…