Alcohol Researchers Identify a Genetic Basis of Pain Response

A common genetic variant influences individual responses and adaptation to pain and other stressful stimuli and may underlie vulnerability to many psychiatric and other complex diseases, reports David Goldman, M.D., Chief, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, and colleagues at NIAAA and the University of Michigan. COMT val158met Genotype Affects m-Opioid Neurotransmitter Responses to a Pain Stressor appears in the February 21 issue of Science (299:1240, 2003).

“Emotional response to stress contributes in many drinkers to the development of alcoholism,” said George Kunos, M.D., Ph.D., Scientific Director, Division of Intramural Clinical and Biological Research, NIAAA. “Dr. Goldman and his colleagues have uncovered a genetic explanation for why some individuals and groups may be especially susceptible to consuming alcohol and to increasing their consumption in response to stress.”

Earlier reports by first author Jon-Kar Zubieta, M.D., Ph.D., Department of Psychiatry and Mental Health Research Institute and Department of Radiology, University of Michigan (Science 293:311, 2001) and others showed that responses to pain vary considerably from one person to another, with some of the difference in sensitivity attributable to genetic factors. Subsequent work showed that some of these effects were due to gender-related factors (Journal of Neuroscience 22:5100, 2002). For the current study, Drs. Goldman, Zubieta, and their colleagues used positron emission tomography (PET) targeting the endogenous opioid system to examine the effects of a specific genetic variant on neurochemical brain responses to sustained pain. The researchers also used questionnaires that measure pain-related sensory and affective qualities and internal emotional state to link the neurochemical responses to participants’ psychological and physical experience of the pain challenge.

The cathechol-O-methyltransferase (COMT) gene encodes a major enzyme involved in the metabolism of the neurotransmitters dopamine (a chemical messenger involved in motivation and reward) and norepinephrine (a chemical messenger involved in sympathetic nervous system stimulation and inhibition). The val158met variant of the COMT gene codes the substitution of valine (val) by methionine (met) and is associated with a three- to fourfold reduction in COMT enzyme activity. This is a common genetic variant such that the distribution of the three genotypes in the general population is approximately 1/3,1/2 and 1/6. Previous research has linked val158met genotypes to a number of behavioral diseases with complex origins, including obsessive-compulsive disease and schizophrenia.

Drs. Goldman, Zubieta, and colleagues hypothesized that variations in COMT activity conferred by the various val158met genotypes might influence functions regulated by dopamine and adrenergic/noradrenergic (epinephrine/norepinephrine) neurotransmission. One such system, the m-opioid neurotransmitter system, typically is activated in response to prolonged pain or stress. To test their hypothesis, the researchers examined 15 men and 14 women genotyped with respect to the val158met polymorphism. The participants were randomized and blinded during the infusion of painful and nonpainful saline solutions.

As anticipated, the researchers who monitored neurochemical changes observed significant effects of genotype on m-opioid receptor binding and system activation. Compared with heterozygotes (individuals with one copy of each allele), individuals with two copies of the met158 allele and lowest COMT enzyme activity showed diminished regional m-opioid system responses, higher sensory and affective ratings of pain, and a more negative internal state. Persons with two copies of the val158 allele and greater COMT enzyme activity demonstrated opposite effects. The regions of the brain showing these changes included the thalamus, a key pain sensory relay station in the pathway for pain perception, and the amygdala, a region of the brain integral for the emotions of anxiety and distress.

“These data emphasize the need for a systems-level approach to neurobiological processes whereby genetic variation, neuronal functional measures, and phenotypic traits [all physical qualities of the behaving organism] are fully integrated,” the authors concluded. The study is available to members of the press from Science (telephone 202/326-6440 or email scipak@aaas.org).

For an interview with Dr. Goldman, please telephone the NIAAA Press Office. Additional alcohol research information, including publications from NIAAA’s genetics research program are available at www.niaaa.nih.gov.

For an interview with Dr. Zubieta, please telephone Ms. Kara Gavin, University of Michigan Health System, 734/764-2220. The National Institute of Dental and Craniofacial Research supported the study in part through grants to the University of Michigan authors.

Media Contact

Ann Bradley EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…