’Virtual biopsy’ – A new way to look at cancer
Scientists are using new imaging technology to help them perform “virtual biopsies,” – biological profiles of specific tumors that may help predict a patients response to treatment and probability of long-term survival. This whole new realm of imaging is called functional MRI (magnetic resonance imaging), a process that offers insight into a tumors character, not just its superficial structure.
Using functional MRI, Dr. Michael Knopp, a radiologist and a member of The Ohio State University Comprehensive Cancer Centers Experimental Therapeutics Program, is studying breast, prostate, pancreatic tumors and others to see if some of their particular biological quirks are related to response to treatment and survival.
Knopp says while X-rays can reveal information about a tumors size and shape, that information alone is not enough to help physicians plan and tailor some of the newest treatments. “Its not what we see, but what we dont that may be more important.”
What X-rays dont show, but what functional MRI does, says Knopp, includes biological processes like angiogenesis, or blood vessel growth surrounding a tumor. Using MRI and special contrast agents, Knopp is able to determine the permeability, or “leakiness” of the tumors support system. Early studies suggest the “leakier” the vessels, the more likely a patient will respond to treatment. “Functional MRI allows us to measure permeability; understanding that characteristic alone can help clinicians better manage the patients care,” says Knopp.
Functional MRI can also reveal a tumors interior landscape, or its heterogeneity. Knopp says some tumors are extremely heterogeneous – meaning they are not biologically uniform. Instead, many may contain clusters of “hot spots,” clumps of cells that are biologically different and often resistant to treatment. “Functional MRI can help us identify those areas, understand their particular features, and hopefully, design targeted therapies for those specific sites,” says Knopp.
In functional MRI, images are made by measuring minute radio waves produced when hydrogen atoms in the body are trapped and vibrate within a magnetic field. The varying intensity of the signal reveals structural features and biological patterns illuminated by injected contrast agents.
“Analyzing data from those images can help us literally see where some chemotherapies are effective, and others are not. We know, for example, that in many cases, treatment with chemotherapy may kill 70 or 80 percent of a cancer, but the remaining tumor cells remain problematic. Now, we can find out exactly where those resistant areas are and we can be more selective and precise with additional treatment,” says Knopp. (See http://www.jamesline.com/output/breastimages.htm for an illustration.)
While functional MRI offers new ways to visualize cancer at work, it presents several problems that need to be solved before it becomes routinely useful in clinical care. It is still so new that scientists have yet to agree on standard methodology they will use to visualize what they want to see. That makes comparing studies and findings across multiple centers difficult. In addition, one study alone can generate as many as 700-800 images that need to be synthesized and read collectively for a complete analysis – a process requiring substantial computational power and highly-trained specialists.
“Its an emerging field, and we think we are just beginning to see what it can do,” says Knopp.
Knopp reviewed functional MRI in oncology in an article in the April issue of Molecular Cancer Therapeutics.
His research is supported by the National Cancer Institute,The Wright Center of Innovation and the Ohio Biomedical Research and Technology Transfer Fund.
Media Contact
More Information:
http://www.osumedcenter.edu/All latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…