Why passive smoking hinders healing

Being exposed to high levels of ’second-hand’ smoke can reduce the speed at which wounds heal, leading to a lack of healing or greater levels of scarring. A study published in the journal BMC Cell Biology this week may begin to explain why: when cells are exposed to smoke, their ability to migrate towards the site of damage is compromised.

The study, carried out by researchers from University of California, Riverside, examined the effects of ’second-hand’ smoke on fibroblasts, cells that play a major role in wound healing. They found that, among other things, exposure to smoke altered the arrangement of the cells’ cytoskeleton – increasing the cells’ adhesive properties and thus reducing their motility.

The researchers write: “These effects can contribute to abnormal healing and may explain why people who are consistently exposed to ’second-hand’ smoke suffer from slow healing and excessive scarring of wounds, much like smokers themselves.”

The research team, led by Professor Manuela Martins-Green, bubbled smoke from the lit end of cigarettes through cell culture media to form a solution containing the major components of ’second-hand’ smoke. They then diluted the ’smoky media’ until the smoke components reached the levels found in the tissues of passive smokers.

When they added this media to fibroblast cells cultured in vitro, the researchers saw that the cells became more elongated and that they separated from one another. By studying components of the cytoskeleton in more detail the researchers saw that exposure to smoke increased the level of one particular cytoskeletal component, actin, inside the cell. It also increased the number of points at which the cell stuck to the Petri dish, sites that could be identified by the presence of ’focal adhesion plaques’.

In a separate experiment, the researchers showed that fibroblasts that had been cultured in the ’smoky medium’ were less mobile than control cells.

During normal wound healing, fibroblasts migrate into the area of damaged tissue and secrete growth factors, cytokines and extra-cellular matrix components. If the cells are unable to migrate, they will remain concentrated at the edge of the wound, preventing the wound from closing properly. If, in addition, the fibroblasts deposit excess extra-cellular matrix components at the edge of the wound, abnormal scars are likely to form.

“These findings have led us to further our studies in a system that more closely mimics the in vivo environment. We are currently using a mouse model system and special chambers, where the mice smoke, to attempt to correlate our in vitro findings with in vivo results,” write the researchers.

Preliminary results suggest that mice that have been exposed to smoke for 6 months are indeed slower at healing wounds. Seven days after mice were wounded using a 5mm diameter hole-punch, wounds of ‘non-smoking’ mice were 95% closed, whereas wounds of ‘smokers’ were only 85% closed.

In ’second-hand’ smoke, many components are more concentrated than in first-hand smoke. For example, the concentrations of nicotine, tar, nitric oxide and carbon monoxide levels are at least twice as high. The researchers hope that their work will: “lead eventually to the realization that ’second-hand’ smoke exposure can be very damaging.”

This press release is based on the following article:

Effects of ’second-hand’smoke on structure and function of fibroblasts – cells that are critical for tissue repair and remodelling
Lina Wong, Harry Miguel Green, Jo Ellen Feugate, Madhav Yadav, Eugene A Nothnagel and Manuela Martins-Green

BMC Cell Biology 2004, 5:13

Media Contact

Gemma Bradley BioMed Central

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…