GM Bacterium Helps Destroy Advanced Tumors in Mice

Generally speaking, we go to great lengths to rid our bodies of foreign bacteria, whether it’s by brushing our teeth, washing our hands or taking antibiotics. But new research suggests that when it comes to treating tumors, we may one day invite the bugs in. According to a study published yesterday in the early online edition of the Proceedings of the National Academy of Sciences, a bacterium that normally resides in soil, dust and dead flesh quickly destroys large tumors in mice when injected along with chemotherapy drugs.

Current cancer treatments are limited in part by their inability to destroy poorly vascularized areas of tumors: radiation requires oxygen to kill cells and chemotherapy drugs demand a blood system to reach their target. Anaerobic bacteria, on the other hand, actually prefer oxygen-free, or hypoxic, environments. Researchers have thus wondered for some time whether such bacteria might prove useful in combating tumors. Now Bert Vogelstein of Johns Hopkins University and his colleagues have shown that they can be. “The idea is to selectively attack these tumors from inside with the bacteria and from the outside with chemotherapy,” Vogelstein explains. The team genetically engineered the bacterium Clostridium novyi, producing a toxin-free strain that, when administered with conventional drugs, eliminated nearly half of the advanced tumors in their lab mice within 24 hours. The healthy tissues surrounding the tumors, in contrast, remained intact.

The team’s so-called combination bacteriolytic therapy (COBALT) did have some negative outcomes, however. As many as 45 percent of the mice with the largest tumors died after treatment, presumably because of toxins released by the deteriorating tumor cells. “Any therapy which dramatically shrinks tumors may be subject to this side effect,” the authors note. Yet although such tumor lysis is difficult to control in mice, it may be more easily controlled in humans. Still, whether or not COBALT will even work against human tumors at all remains to be seen. Says team member Kenneth Kinzler: “We hope that this research will add a new dimension to cancer treatment but realize that the way tumors respond to treatment in mice can be different than in humans.”

Media Contact

Kate Wong Scientific American

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…