Researchers use magnetic attraction to improve stents, reduce blood clot risk
The research report appears in the Nov. 7 issue of the Journal of the American College of Cardiology (http://content.onlinejacc.org/). The Mayo team describes encouraging results from preclinical testing.
In the study, the cells were extracted from blood, and tiny iron-based paramagnetic particles were placed within the cells. Each stent was implanted through a tube (catheter) threaded through the blood vessels. Researchers then introduced the iron-tagged cells back into the blood vessel to test how well the magnetized stents captured the cells.
Because the healing cells — also known as endothelial progenitor cells derived from circulating blood — naturally fight blood clot formation, their swift magnetically guided arrival to the stent may reduce the chances of blood clot formation by lining the site fully and quickly, Mayo researchers say.
Results show a sixfold to 30-fold improvement in the magnetized stents' performance in capturing the healing endothelial cells, compared to the standard stents' ability to do so.
“The ability to rapidly coat implanted devices with living cells could accelerate local tissue healing and thereby reduce the risk of blood clot formation,” says cardiologist Gurpreet Sandhu, M.D., Ph.D., lead investigator. “Our approach of magnetic cell targeting is the next generation of strategies for improving the safety of stents — and it appears that magnetic forces may provide an elegant solution for cell capture. Additionally, this new magnetic targeting technology can be adapted to develop new cell-, gene- and drug-based treatments for cancer and other human diseases.”
Dr. Sandhu adds that, while encouraging, the method is still experimental and not ready to be used on human patients. Researchers are refining their approach, including developing new biomaterials.
Significance of the Mayo Research
“Many people are currently concerned about the risk of blood clots associated in a small percentage of patients with the use of drug-eluting stents,” says cardiologist and cardiac researcher Robert Simari, M.D., who co-authored the paper. “Our approach holds the potential to overcome the limitations of the current drug-eluting stent technology because we address the basic conditions of clot formation. One of the reasons clots can form in drug-eluting stent patients is that the area surrounding the stent is not relined fully or quickly enough with the cells in the body, called endothelial cells, that naturally fight blood clots. Our system delivers endothelial cells right where they need to be, rapidly, with the potential for limiting clot formation.”
How It Works
Multiple steps led to the development of the new Mayo magnetic cell targeting stent system. For example, the researchers had to devise:
o a way to successfully get endothelial cells derived from blood and grown in lab dishes to live and proliferate when tagged with tiny amounts of magnetically responsive material known as iron-based paramagnetic microspheres.
o specially fabricated stainless steel stents coated with magnetic materials that demonstrated excellent ability to capture the magnetically tagged endothelial cells.
Media Contact
More Information:
http://www.mayo.eduAll latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…