Researchers have found brown fat’s “off-switch
Researchers from the University of Southern Denmark, the Novo Nordisk Center for Adipocyte Signaling (SDU), the University of Bonn and the University Hospital Bonn (UKB) have found a protein that is responsible for turning off brown fat activity. This new discovery could lead to a promising strategy for safely activating brown fat and tackling obesity and related health problems. The results of the study have now been published in the journal „Nature Metabolism“.
Brown fat, also known as brown adipose tissue (BAT), is a type of fat in our bodies that’s different from the white fat around our belly and thighs that we are more familiar with. Brown fat has a special job—it helps to burn calories from the foods that we eat into heat, which can be helpful, especially when we’re exposed to cold temperatures like during winter swimming or cryotherapy. For a long time, scientists thought that only small animals like mice and newborns had brown fat. But new research shows that a certain number of adults maintain their brown fat throughout life. Because brown fat is so good at burning calories, scientists are trying to find ways to activate it safely using drugs that boost its heat-producing abilities.
Graphic to brown fat deposits. (c) University of Southern Denmark
A new study from the research groups of Prof. Jan-Wilhelm Kornfeld from the University of Southern Denmark and the Novo Nordisk Center for Adipocyte Signaling and Dagmar Wachten from the University Hospital Bonn and the University of Bonn (Germany) has found that brown fat has a previously unknown built-in mechanism that switches it off shortly after being activated. This limits its effectiveness as treatment against obesity. According to first author of the study, Hande Topel, who is a Senior Postdoc at the University of Southern Denmark and the Novo Nordisk Center for Adipocyte Signaling (Adiposign), the team has now discovered a protein responsible for this switching-off process. It is called ‘AC3-AT’.
Blocking the “off switch” opens up a new strategy
“Looking ahead, we think that finding ways to block AC3-AT could be a promising strategy for safely activating brown fat and tackling obesity and related health problems”, Hande Topel says. The research team found the switch-off protein using advanced technology predicting unknown proteins. Hande Topel explains: “When we investigated mice that genetically didn’t have AC3-AT, we found that they were protected from becoming obese, partly because their bodies were simply better at burning off calories and were able to increase their metabolic rates through activating brown fat”.
Two groups of mice were fed a high-fat diet for 15 weeks, which rendered them obese. The group that had their AC3-AT protein removed, gained less weight than the control group and were metabolically healthier. “The mice that have no AC3-AT protein, also accumulated less fat in their body and increased their lean mass when compared to the control mice”, says co-author, Ronja Kardinal, who is a PhD student at the University of Bonn in the lab of Dagmar Wachten at UKB, continuing: “As AC3-AT is found not only in mice but also in humans and other species, there are direct therapeutic implications for humans”.
Hope for strategies that support weight loss
Although the prevalence of brown fat decreases as humans age, and despite grown-ups not having as much brown fat as newborns, it can still be activated, for instance by cold exposure. When it gets activated, it enhances the rate of metabolism of these individuals, which again may help to stabilize weight loss in conditions where calorie intake is (too) high.
Intriguingly, this study not only identified AC3-AT, which is a shorter, previously unknown form of the AC3protein. The researchers also identified other unknown protein/gene versions, that respond to cold exposure, similar to AC3-AT.
“However, further research is needed to elucidate the therapeutic impact of these alternative gene products and their regulatory mechanisms during BAT activation”, says co-corresponding author Prof. Dagmar Wachten, Co-Director of the Institute of Innate Immunity at the UKB and member of the Cluster of Excellence ImmunoSensation2 and the Transdisciplinary Research Areas (TRA) “Modelling” and “Life & Health” at the University of Bonn.
“Understanding these kinds of molecular mechanisms not only sheds light on the regulation of brown fat but also holds promise for unraveling similar mechanisms in other cellular pathways. This knowledge can be instrumental in advancing our understanding of various diseases and in the development of novel treatments”, says co-corresponding author Prof. Jan-Wilhelm Kornfeld, University of Southern Denmark.
This study was conducted in the context of the DFG Collaborative Research Center Transregio-SFB 333 “Brown and Beige Fat – Organ Interactions, Signaling Pathways and Energy Balance (BATenergy)”, which is pursuing a better understanding of the different types of adipose tissue and their role in metabolic diseases and the Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign) at SDU that aims to understand fat cell dysfunction in model organisms and obese patients.
Publication: Sajjad Khani, Hande Topel, Ronja Kardinal et al; Cold-induced expression of a truncated Adenylyl Cyclase 3 acts as rheostat to brown fat function; Nature Metabolism;
DOI: 10.1038/s42255-024-01033-8
https://www.nature.com/articles/s42255-024-01033-8
Press contact:
Dr. Inka Väth
Deputy Press Officer at the University Hospital Bonn (UKB)
Communications and Media Office at Bonn University Hospital
Phone: (+49) 228 287-10596
E-mail: inka.vaeth@ukbonn.de
About Bonn University Hospital: The UKB treats around 500,000 patients per year, employs around 9,000 staff and has total assets of 1.6 billion euros. In addition to the 3,500 medical and dental students, 550 people are trained in numerous healthcare professions each year. The UKB is ranked first among university hospitals (UK) in NRW in the science ranking and in the Focus clinic list and has the third highest case mix index (case severity) in Germany. In 2022 and 2023, the F.A.Z. Institute recognized the UKB as the most desirable employer and training champion among public hospitals in Germany.
Wissenschaftliche Ansprechpartner:
Prof. Dagmar Wachten
Institute for Innate Immunity at the University Hospital Bonn (UKB)
Cluster of Excellence ImmunoSensation2, TRA “Modeling” & “Life & Health”, University of Bonn
Phone: (+49) 228/ 287-51978; E-Mail: Dagmar.Wachten@ukbonn.de
Prof. Jan-Wilhelm Kornfeld
Center for Adipocyte Signaling (ADIPOSIGN)
Department of Biochemistry and Molecular Biology, University of Southern Denmark.
Phone: +45 9350 7481; E-Mail: janwilhelmkornfeld@bmb.sdu.dk
Originalpublikation:
Sajjad Khani, Hande Topel, Ronja Kardinal et al; Cold-induced expression of a truncated Adenylyl Cyclase 3 acts as rheostat to brown fat function; Nature Metabolism;
DOI: 10.1038/s42255-024-01033-8
Weitere Informationen:
https://www.nature.com/articles/s42255-024-01033-8 Publikation
Media Contact
All latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….
Climate change can cause stress in herring larvae
The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…
Making high-yielding rice affordable and sustainable
Plant biologists show how two genes work together to trigger embryo formation in rice. Rice is a staple food crop for more than half the world’s population, but most farmers…