Respiratory bacteria ‘turns off’ immune system to survive

A microscopic view of Haemophilus influenzae bacteria.
Credit: UQ

Researchers from The University of Queensland have identified how a common bacterium is able to manipulate the human immune system during respiratory infections and cause persistent illness.

The research, led by Professor Ulrike Kappler from UQ’s School of Chemical and Molecular Biosciences, studied the virulence mechanisms of Haemophilus influenzae, a bacterium that plays a significant role in worsening respiratory tract infections.

“These bacteria are especially damaging to vulnerable groups, such as those with cystic fibrosis, asthma, the elderly, and Indigenous communities,” Professor Kappler said.

“In some conditions, such as asthma and chronic obstructive pulmonary disease, they can drastically worsen symptoms.

“Our research shows the bacterium persists by essentially turning off the body’s immune responses, inducing a state of tolerance in human respiratory tissues.”

Professor Kappler said the bacterium had a unique ability to ‘talk’ to and deactivate the immune system, convincing it there was no threat.

The researchers prepared human nasal tissue in the lab, growing it to resemble the surfaces of the human respiratory tract, then monitored gene expression changes over a 14-day ‘infection’.

They found very limited production of inflammation molecules over time, which normally would be produced within hours of bacteria infecting human cells.

“We then applied both live and dead Haemophilus influenzae, showing the dead bacteria caused a fast production of the inflammation makers, while live bacteria prevented this,” Professor Kappler said.

“This proved that the bacteria can actively reduce the human immune response.”

Co-author and paediatric respiratory physician Emeritus Professor Peter Sly from UQ’s Faculty of Medicine, said the results show how Haemophilus influenzae can cause chronic infections, essentially living in the cells that form the surface of the respiratory tract.

“This is a rare behaviour that many other bacteria don’t possess,” Emeritus Professor Sly said.

“If local immunity drops, for example during a viral infection, the bacteria may be able to ‘take over’ and cause a more severe infection.”

The findings will lead to future work towards new treatments to prevent these infections by helping the immune system to recognise and kill these bacteria.

“We’ll look at ways of developing treatments that enhance the immune system’s ability to detect and eliminate the pathogen before it can cause further damage,” Professor Kappler said.

The research was published in PLOS Pathogens.

Media Contact

Dominic Jarvis
University of Queensland
dominic.jarvis@uq.edu.au
Office: 041-333-4924

Expert Contact

Prof. Ulrike Kappler
The University of Queensland
u.kappler1@uq.edu.au
Cell: +61 415 641 910

www.uq.edu.au

Media Contact

Dominic Jarvis
University of Queensland

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

SpinMagIC: ‘EPR on a chip’ ensures quality of olive oil and beer

Spin-off company offers a tiny solution for a big problem. The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and…

Impressive results against autoimmune disease

Severe systemic lupus no longer detectable after cancer medication treatment. The team at Charité – Universitätsmedizin Berlin is astounded by the huge improvement seen in a female patient with severe…

UCF researchers develop rapid test to detect dopamine

The sensor could serve as a low-cost and efficient tool for early detection of neurological disorders and conditions, including Parkinson’s disease, Alzheimer’s disease and depression. Dopamine, a neurotransmitter in our…

Partners & Sponsors