Small Liquid Sensor May Detect Cancer Instantly, Could Lead to Home Detection Kit
What if it were possible to go to the store and buy a kit to quickly and accurately diagnose cancer, similar to a pregnancy test?
A University of Missouri researcher is developing a tiny sensor, known as an acoustic resonant sensor, that is smaller than a human hair and could test bodily fluids for a variety of diseases, including breast and prostate cancers.
“Many disease-related substances in liquids are not easily tracked,” said Jae Kwon, assistant professor of electrical and computer engineering at MU. “In a liquid environment, most sensors experience a significant loss of signal quality, but by using highly sensitive, low-signal-loss acoustic resonant sensors in a liquid, these substances can be effectively and quickly detected — a brand-new concept that will result in a noninvasive approach for breast cancer detection.”
Kwon’s real-time, special acoustic resonant sensor uses micro/nanoelectromechanical systems (M/NEMS), which are tiny devices smaller than the diameter of a human hair, to directly detect diseases in body fluids. The sensor doesn’t require bulky data reading or analyzing equipment and can be integrated with equally small circuits, creating the potential for small stand-alone disease-screening systems. Kwon’s sensor also produces rapid, almost immediate results that could reduce patient anxiety often felt after waiting for other detection methods, such as biopsies, which can take several days or weeks before results are known.
“Our ultimate goal is to produce a device that will simply and quickly diagnose multiple specific diseases, and eventually be used to create ‘point of care’ systems, which are services provided to patients at their bedsides,” Kwon said. “The sensor has strong commercial potential to be manifested as simple home kits for easy, rapid and accurate diagnosis of various diseases, such as breast cancer and prostate cancer.”
Last January, Kwon was awarded a $400,000, five-year National Science Foundation CAREER Award to continue his effort on this sensor research. The CAREER award is the NSF’s most prestigious award in support of junior faculty members who exemplify the role of teacher-scholars through outstanding research, excellent teaching, and the integration of education and research. Kwon’s sensor research has been published in the IEEE International Conference on Solid-state, Sensors, Actuators and Microsystems and the IEEE Conference on Sensors.
Media Contact
More Information:
http://www.missouri.eduAll latest news from the category: Health and Medicine
This subject area encompasses research and studies in the field of human medicine.
Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…