Researchers model human stem cells to identify degeneration in glaucoma

A team of researchers from IU School of Medicine are using human stem cells to study degeneration in glaucoma. Credit: IU School of Medicine

The study, published June 11 in Stem Cell Reports, focused on targeting genetic mutations within retinal ganglion cells, which serve as the connection between the eye and the brain.

Researchers found that when differentiating pluripotent human stem cells into retinal ganglion cells, they were able to identify characteristics associated with neurodegeneration in glaucoma.

“Once you've identified a target like this–what's going wrong in the cells–this opens up a number of possibilities for the eventual development of therapeutic approaches, especially pharmacology approaches to slow down and reverse these degenerative phenotypes,” said Jason Meyer, PhD, associate professor of medical and molecular genetics at IU School of Medicine.

The team of researchers was led by Meyer, along with the co-first authors of the publication, Kirstin VanderWall and Kang-Chieh Huang, graduate students from the School of Science at IUPUI in Meyer's lab, which is located within Stark Neurosciences Research Institute. Meyer's lab had previously been located within the School of Science.

When retinal ganglion cells degenerate through glaucoma, it leads to the loss of vision and eventual blindness. Researchers in this study derived pluripotent stem cells from a patient that had a genetic form of glaucoma, Meyer said. They then differentiated the stem cells into retinal ganglion cells to search for neurodegeneration deficits.

“One of the powerful things about (stem cell research) is when you get the cells from a patient that has a genetic basis for a disease, all of the blueprints are there in the cell's DNA to develop features of the disease,” Meyer said.

They also used gene editing technology–CRISPR-Cas9–to introduce a genetic mutation commonly associated with glaucoma into existing lines of the stem cells for disease modeling, as well as to correct the gene defect in patient-derived cells.

“CRISPR/Cas9 gene editing approaches not only allowed us to study the disease, but using this approach we were also able to show how correcting the gene mutation reversed the disease, demonstrating the potential for gene therapy approaches as well,” Huang said.

Meyer said the team discovered dysfunction in the process of autophagy, the body's way of removing damaged cells to regenerate healthy cells.

“We found that in the glaucoma patient cells, there are some deficits in this autophagy process, so you had too much cellular junk that was being built up,” Meyer said, adding that those deficits correlated with the degeneration of the cells, which would shrivel up and eventually die off.

Using a pharmaceutical compound called rapamycin–which is known to boost the process of autophagy–Meyer said they found that many of the neurodegenerative characteristics they had previously identified slowed down and the cells seemed to recover and appear more normal.

Meyer said human stem cells are instrumental in studying human disease, especially neurodegeneration. Past studies on retinal ganglion cells and glaucoma as a degenerative disease using animal models suggest differences in how cells respond between species.

“Since they are human cells, it gives somewhat of a more representative model for us to test pharmacological compounds,” VanderWall added, “and it gives us a better idea of how it could potentially be toxic or nontoxic to human cells compared to testing compounds in animals.”

Meyer said having identified a target within the cells–the process of autophagy–the lab's ongoing work will focus on analyzing ways to use different types of pharmaceutical compounds for treatment of glaucoma. As is the case for many neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, there are very few treatments, if any, and no cures.

“There is a dire need to try and identify new approaches to treat these diseases,” Meyer said. Grant support for this research was provided by the National Eye Institute, the Indiana Department of Health Spinal Cord and Brain Injury Research Fund and the Indiana Clinical and Translational Sciences Institute.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…