Engineering Team Explores Power of the Mind; Testing How Mere Thoughts Can Operate Computers and More

On any given day, in the heart of a lab in the College of Engineering at Rowan University, LaRocco can be found in front of a computer, electrodes poking out from the black Lycra-like cap that covers his head, Velcroed securely under his chin.

No, the 23-year-old from Washington Township, N.J., is not prepping for suspense director Shyamalan’s next blockbuster: the grad student in electrical and computer engineering actually is at work as part of a team exploring brain/computer interfaces. Simply put — very simply put — he’s working on ways that people can use their minds to power a computer and other technology to complete a variety of actions.

On a recent day, LaRocco used his thoughts to move a ball into a box on the computer screen and to spell out a name. He wasn’t flawless — he had to mentally power the computer to fix a mistake here and there — but in short order he could propel the ball into the box and get the name just right without laying a finger on the keyboard.

Key to his effort was that cap, called an electrode cap, which has 40 electrodes that connect to the skin on his head, a thick layer of gel acting as a conduit and connector between man and device. Equally important was some very intricate data analysis software. Strategically placed, the electrodes produce signals that correspond to parts of the brain that relate to specific functions. The electrodes connect to a 40-channel electroencephalogram (EEG) system that displays the electrical activity of the brain, by picking up signals from the user’s brain and amplifying and relaying those signals to an attached computer.

In short, what a user thinks is encoded in the EEG signals and transferred via electrodes to the EEG equipment to the computer. In LaRocco’s recent demonstration, when he thought of a specific action — in this case squeezing his hands — the ball would move up, and when he thought of another action — kicking his feet — the ball would move down. He’s learned little tricks as he has practiced, such as avoiding blinking and trying not to tighten his jaw since both actions seem to interfere with the brain/computer connection.

LaRocco is working with fellow ECE grad student James Ethridge, 26, of South Philadelphia and Glassboro, N.J., on the project under the guidance of Dr. Robi Polikar, a nationally recognized engineering professor with a long history of exploring the possibilities of the mind, including research on Alzheimer’s disease funded by the National Institutes of Health's National Institute on Aging.

Explained Polikar of his latest project: “The brain/computer interface in general allows you to control a device using your thoughts. The device can be mechanical, like a joystick, computer cursor or keyboard. The moment that you can create a control signal, you can control anything.”

Using thoughts to control the computer involves the subject stimulating a pattern in an EEG signal. For instance, when LaRocco wanted to select a letter in the name he was trying to spell he’d look at a matrix of flashing letters that contains the entire alphabet, and count every time the desired letter flashed. That counting registered in his brain waves and generated a pattern that the team’s data analysis software recognized to represent the letter he wanted to capture.

Rowan is new to the brain/computer field, and it’s a field that is growing. Brain/computer interfaces may have many applications in the future, some which may benefit security and health care. The research may have other applications as well, such as programming a robot to vacuum the den, improving gaming devices and running a smart house.

“There’s no one single end goal, but there are many applications,” said LaRocco, who hopes to pursue a Ph.D. in engineering and is interested in prosthetic and biofeedback devices. For example, he said, the military could use the system to ensure pilots are properly trained, people dealing with paralysis could use their thoughts to complete tasks such as moving robotic limbs and motorized wheelchairs, and security personnel could employ such a technology as a more accurate lie detector.

LaRocco is focusing on the brain/computer interface for his master’s thesis, exploring whether individuals who use relaxation techniques like tai chi and meditation can better manipulate and control their thoughts than those who do not pursue such techniques.

Ethridge has been focusing on how the system works, providing the technical support. He's interested in working in the field of signal processing and pattern recognition and also hopes to earn his doctorate in engineering.

“It’s a challenging project,” Ethridge said. “I like the fact that I am working on something that can improve the quality of life. The big draw for using the EEG is it’s noninvasive and hence doesn’t require surgery.”

Media Contact

Patricia Quigley Newswise Science News

More Information:

http://www.rowan.edu

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Scientists transform blood into regenerative materials

… paving the way for personalized, blood-based, 3D-printed implants. Scientists have created a new ‘biocooperative’ material based on blood, which has shown to successfully repair bones, paving the way for…

A new experimental infection model in flies

…offers a fast and cost-effective way to test drugs. Researchers at the Germans Trias i Pujol Research Institute and Hospital have reinforced their leading role in infectious disease research by…

Material developed with novel stretching properties

KIT researchers produce metamaterial with different extension and compression properties than conventional materials. With this material, the working group headed by Professor Martin Wegener at KIT’s Institute of Applied Physics…