Enhanced wavelength conversion to advance quantum information networks
New research achieves significant bandwidth in frequency conversion, paving the way for more efficient quantum information transfer and integrated photonic systems.
Advancements in quantum information technology are paving the way for faster and more efficient data transfer. A key challenge has been ensuring that qubits, the fundamental units of quantum information, can be transferred between different wavelengths without losing their essential properties, such as coherence and entanglement. As reported in Advanced Photonics, researchers from Shanghai Jiao Tong University (SJTU) recently made significant strides in this area by developing a novel method for broadband frequency conversion, a crucial step for future quantum networks.
(a) Schematic of the birefringent racetrack resonator on X-cut TFLN, where SH-band light experiences a mode-hybridization in the half-circle waveguide. (b) Principle of SQPM. Inset: varying SQPM SHG intensity with the periodically inverted efficient nonlinear coefficient (m=5), and a comparison among the SHG processes under the perfect phase-matching (PPM), QPM, SQPM, and phase mismatching (PMM). (c) Effective refractive indices of the hybrid mode in SH-band and TE0 mode in FW-band in the half-circle waveguide, and the vector mismatch dispersion between them. (d) Average vector mismatch dispersion versus different FW wavelengths, which is positive in the straight waveguide and negative in the half-circle waveguide. Credit: T. Yuan, J. Wu, et al., doi 10.1117/1.AP.6.5.056012.
The SJTU team focused on a technique using X-cut thin film lithium niobate (TFLN), a material known for its nonlinear optical properties. They achieved broadband second-harmonic generation—an important process for converting light from one wavelength to another—with a remarkable bandwidth of up to 13 nanometers. This was accomplished through a process called mode hybridization, which allows for precise control over the frequency conversion in a micro-racetrack resonator.
According to corresponding author Professor Yuping Chen, “An efficient second-order nonlinear process with widely-tunable pump bandwidth has been a long-pursued goal, owing to the extensive applications in wavelength division multiplexing networks, ultrashort pulse nonlinearity, quantum key distribution, and broadband single-photon source generation.” She adds, “Thanks to the great progress in fabrication technology on the TFLN platform, this work will pave the way to chip-scale nonlinear frequency conversion between the ultrashort optical pulses and even the quantum states.”
This breakthrough could have wide-ranging implications for integrated photonic systems. By enabling on-chip tunable frequency conversion, it opens the door to enhanced quantum light sources, larger capacity multiplexing, and more effective multichannel optical information processing. As researchers continue to explore these technologies, the potential for expanding quantum information networks grows, bringing us closer to realizing their full capabilities in various applications.
For details, see the original Gold Open Access article by T. Yuan, J. Wu, et al., “Chip-scale nonlinear bandwidth enhancement via birefringent mode hybridization,” Adv. Photon. 6(5), 056012 (2024), doi 10.1117/1.AP.6.5.056012.
Journal: Advanced Photonics
DOI: 10.1117/1.AP.6.5.056012
Article Title: Chip-scale nonlinear bandwidth enhancement via birefringent mode hybridization
Article Publication Date: 18-Sep-2024
Media Contact
Daneet Steffens
SPIE–International Society for Optics and Photonics
daneets@spie.org
Office: 360-685-5478
All latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…