How AI helps programming a quantum computer
Researchers from the University of Innsbruck have unveiled a novel method to prepare quantum operations on a given quantum computer, using a machine learning generative model to find the appropriate sequence of quantum gates to execute a quantum operation. The study, recently published in Nature Machine Intelligence, marks a significant step forward in unleashing the full extent of quantum computing.
Generative models like diffusion models are one of the most important recent developments in Machine Learning (ML), with models as Stable Diffusion and Dall.e revolutionizing the field of image generation. These models are able to produce high quality images based on some text description. “Our new model for programming quantum computers does the same but, instead of generating images, it generates quantum circuits based on the text description of the quantum operation to be performed”, explains Gorka Muñoz-Gil from the Department of Theoretical Physics of the University of Innsbruck, Austria.
To prepare a certain quantum state or execute an algorithm on a quantum computer, one needs to find the appropriate sequence of quantum gates to perform such operations. While this is rather easy in classical computing, it is a great challenge in quantum computing, due to the particularities of the quantum world. Recently, many scientists have proposed methods to build quantum circuits with many relying machine learning methods. However, training of these ML models is often very hard due to the necessity of simulating quantum circuits as the machine learns. Diffusion models avoid such problems due to the way how they are trained. “This provides a tremendous advantage”, explains Gorka Muñoz-Gil, who developed the novel method together with Hans J. Briegel and Florian Fürrutter. “Moreover, we show that denoising diffusion models are accurate in their generation and also very flexible, allowing to generate circuits with different numbers of qubits, as well as types and numbers of quantum gates.” The models also can be tailored to prepare circuits that take into consideration the connectivity of the quantum hardware, i.e. how qubits are connected in the quantum computer. “As producing new circuits is very cheap once the model is trained, one can use it to discover new insights about quantum operations of interest”, Gorka Muñoz-Gil names another potential of the new method.
The method developed at the University of Innsbruck produces quantum circuits based on user specifications and tailored to the features of the quantum hardware the circuit will be run on. This marks a significant step forward in unleashing the full extent of quantum computing. The work has now been published in Nature Machine Intelligence and was financially supported by the Austrian Science Fund FWF and the European Union, among others.
Wissenschaftliche Ansprechpartner:
Gorka Muñoz-Gil
Department of Theoretical Physics
University of Innsbruck
+43 512 507 52257
gorka.munoz-gil@uibk.ac.at
https://www.uibk.ac.at/th-physik/qic-group
Originalpublikation:
Quantum circuit synthesis with diffusion models. Florian Fürrutter, Gorka Muñoz-Gil, and Hans J. Briegel. Nature Machine Intelligence 2024 DOI: https://doi.org/10.1038/s42256-024-00831-9 [arXiv: https://arxiv.org/abs/2311.02041]
https://www.uibk.ac.at/en/newsroom/2024/how-ai-helps-programming-a-quantum-computer/
Media Contact
All latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…