Laser Security for the Internet

A British computer hacker equipped with a “Dummies” guide recently tapped into the Pentagon. As hackers get smarter, computers get more powerful and national security is put at risk. The same goes for your own personal and financial information transmitted by phone, on the Internet or through bank machines.

Now a new invention developed by Dr. Jacob Scheuer of Tel Aviv University's School of Electrical Engineering promises an information security system that can beat today's hackers — and the hackers of the future — with existing fiber optic and computer technology. Transmitting binary lock-and-key information in the form of light pulses, his device ensures that a shared key code can be unlocked by the sender and receiver, and absolutely nobody else. He will present his new findings to peers at the next laser and electro-optics conference this May at the Conference for Lasers and Electro-Optics (CLEO) in San Jose, California.

“When the RSA system for digital information security was introduced in the 1970s, the researchers who invented it predicted that their 200-bit key would take a billion years to crack,” says Dr. Scheuer. “It was cracked five years ago. But it's still the most secure system for consumers to use today when shopping online or using a bank card. As computers become increasingly powerful, though, the idea of using the RSA system becomes more fragile.”

Plugging a leak in a loophole

Dr. Sheuer says the solution lies in a new kind of system to keep prying eyes off secure information. “Rather than developing the lock or the key, we've developed a system which acts as a type of key bearer,” he explains.

But how can a secure key be delivered over a non-secure network — a necessary step to get a message from one user to another? If a hacker sees how a key is being sent through the system, that hacker could be in a position to take the key. Dr. Sheuer has found a way to transmit a binary code (the key bearer) in the form of 1s and 0s, but using light and lasers instead of numbers. “The trick,” says Dr. Scheuer, “is for those at either end of the fiber optic link to send different laser signals they can distinguish between, but which look identical to an eavesdropper.”

New laser is key

Dr. Scheuer developed his system using a special laser he invented, which can reach over 3,000 miles without any serious parts of the signal being lost. This approach makes it simpler and more reliable than quantum cryptography, a new technology that relies on the quantum properties of photons, explains Dr. Scheuer. With the right investment to test the theory, Dr. Scheuer says it is plausible and highly likely that the system he has built is not limited to any range on earth, even a round-the-world link, for international communications.

“We've already published the theoretical idea and now have developed a preliminary demonstration in my lab. Once both parties have the key they need, they could send information without any chance of detection. We were able to demonstrate that, if it's done right, the system could be absolutely secure. Even with a quantum computer of the future, a hacker couldn't decipher the key,” Dr. Scheuer says.

Keep up with the latest AFTAU news on Twitter: http://www.twitter.com/AFTAUnews

Media Contact

George Hunka EurekAlert!

More Information:

http://www.aftau.org

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

How marine worms regenerate lost body parts

The return of cells to a stem cell-like state as the key to regeneration. Many living organisms are able to regenerate damaged or lost tissue, but why some are particularly…

Nano-scale molecular detective

New on-chip device uses exotic light rays in 2D material to detect molecules. Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature…

Novel CAR T-cell therapy

… demonstrates efficacy and safety in preclinical models of HER2-positive solid tumors. The p95HER2 protein is found expressed in one third of HER2+ tumors, which represent 4% of all tumors….