New laser technology developed by EPFL and IBM

A chip developed in the study.
Credit: Grigorii Likhachev (EPFL)

Scientists at EPFL and IBM have developed a new type of laser that could have a significant impact on optical ranging technology. The laser is based on a material called lithium niobate, often used in the field of optical modulators, which controls the frequency or intensity of light that is transmitted through a device.

Lithium niobate is particularly useful because it can handle a lot of optical power and has a high “Pockels coefficient”, which means that it can change its optical properties when an electric field is applied to it.

The researchers achieved their breakthrough by combining lithium niobate with silicon nitride, which allowed them to produce a new type of hybrid integrated tunable laser. To do this, the team manufactured integrated circuits for light (“photonic integrated circuits”) based on silicon nitride at EPFL, and then bonded them with lithium niobate wafers at IBM.

The approach produced a laser with low frequency noise (a measure of how stable the laser’s frequency is) and simultaneously with fast wavelength tuning – both great qualities for a laser used in light detection and ranging (LiDAR) applications. Then they performed an optical ranging experiment where they used the laser to measure distances with high precision.

Beyond integrated lasers, the hybrid platform has the potential to realize integrated transceivers for telecommunications as well as microwave-optical transducers for use in quantum computing.

“What is remarkable about the result is that the laser simultaneously provides low phase noise and fast petahertz-per-second tuning, something that has never before been achieved with such a chip-scale integrated laser,” says Professor Tobias J. Kippenberg, who led the EPFL side of the project.

The chip samples were fabricated in the EPFL center of MicroNanoTechnology (CMi) and the Binnig and Rohrer Nanotechnology Center (BRNC) at IBM Research.

Journal: Nature
DOI: 10.1038/s41586-023-05724-2
Article Title: Ultrafast tunable lasers using lithium niobate integrated photonics.
Article Publication Date: 15-Mar-2023

Media Contact

Nik Papageorgiou
Ecole Polytechnique Fédérale de Lausanne
n.papageorgiou@epfl.ch
Office: 41-216-932-105

www.epfl.ch

Media Contact

Nik Papageorgiou
Ecole Polytechnique Fédérale de Lausanne

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…