On the trail of bee mortality with energy-autonomous sensors
Bees not only provide us humans with honey, but thanks to the pollination of herbs, shrubs and trees, they are significantly responsible for the preservation of species. As a result, they generate around 1.6 billion euros for agriculture and food production in Germany*. To help honey bees take flight and advance environmental and agricultural monitoring as well as research on bee health, a research project will now equip them with miniaturized, integrated sensor systems.
Beekeeping is in vogue, and not just in rural communities, but also in the urban environment. In addition to honey-producing colonies, wild bees in particular are a great support for insect pollination services, which are important for agriculture. For this reason, the recent increase in the number of deaths of various species of wild bees** has caused a stir in various regions around the world. Considering the wide distribution of bees, their importance to the agricultural economy, and the general level of knowledge about this insect, it is surprising that the causes of bee mortality are still largely unexplored.
Exposure to pathogens, as well as environmental toxins that the insects absorb from the air, water, and plants, has so far only been determined for whole bee colonies based on colony dynamics and honey yield. To better understand which environmental factors are critical for colony health, it is necessary to study both whole colony and individual bee development.
For this reason, the goal of the Sens4Bee project is to collect enough data using various RFID-based sensors in hives and on individual animals to be able to analyze bee welfare in relation to environmental events and parameters. For this purpose, the company Micro-Sensys GmbH is developing a sensor system to detect temperature, humidity, vibration and acoustic signals in the hive. The Helmholtz Centre for Environmental Research – UFZ is processing the collected data and analyzing its significance for the health status of bee colonies.
In addition, the Fraunhofer Institute for Reliability and Microintegration IZM is working with Micro-Sensys GmbH to develop sensors that combine a new micro battery technology and micro energy harvesting in a single system. These sensors are attached to bees to determine temperature, brightness and flight movement. The collected data is then processed and displayed in an intelligent cloud solution with analysis tools.
In order to make the data obtained available for practical management options in beekeeping, another focus of the project is on smart processing, which provides beekeepers with concrete recommendations for action. For applied research, the individually collected animal and hive data will be linked to environmental events to improve, for example, the assessment of environmental chemicals.
Fraunhofer IZM is developing an extremely small lithium battery and a solar module using silicon technology. These are integrated by the company Micro-Sensys GmbH with the smallest sensor transponders and sensor data loggers with RFID interface in a module so small and light that it can be carried by bees on their backs. The total weight is between two and ten milligrams and is applied in an animal-friendly manner directly during the bees’ first stage of development by means of a biocompatible adhesive. Experience with the passive RFID chips used to date has shown that electronic components of this size do not affect or alter bee behavior.
Silicon wafer-level technology can produce hundreds of tiny batteries simultaneously on a single substrate. In contrast to previously common button cells with metal housings, the much lighter silicon is used as the housing material. The researchers’ goal here is to supply the system with energy from the battery for the duration of the bee’s flight. Charging takes place during the flight phase by daylight. In the hive, the battery is charged by infrared light.
Since the start of the project a few months ago, the focus has clearly been on the technical development of an integrative solution for beehives, individual sensor technology and automated evaluation, which will provide beekeepers with an easy-to-use tool. Beyond this practically oriented clientele, it can be assumed that further bee and environmental institutes as well as national and international research associations can be won over.
In addition to Fraunhofer IZM and Micro-Sensys GmbH, the Helmholtz Centre for Environmental Research – UFZ, the Institute for Bee Research at the Julius KühnInstitute, Heinrich Holtermann KG and the German Beekeepers’ Association are involved in the project. The Sens4Bee project is being funded for a period of three years with a volume of 1.1 million euros. Based on a resolution of the German Bundestag, the project is funded by the Federal Ministry of Food and Agriculture (BMEL). The Federal Agency for Agriculture and Food (BLE) holds the project sponsorship within the framework of the program for the promotion of innovation. The project application was submitted within the framework of the BMLE’s “Guidelines for the funding of research projects for the protection of bees and other pollinating insects in the agricultural landscape”.
* https://orgprints.org/id/eprint/32437/
** Hung et al, Proc Biol Sci. 2018 Jan 10; 285(1870): 20172140; doi: 10.1098/rspb.2017.2140
Wissenschaftliche Ansprechpartner:
Dr. Robert Hahn l Phone +49 30 46403-611 l robert.hahn@izm.fraunhofer.de | Fraunhofer Institute for Reliability and Microintegration IZM | Gustav-Meyer-Allee 25 | 13355 Berlin | www.izm.fraunhofer.de |
Originalpublikation:
https://www.izm.fraunhofer.de/en/news_events/tech_news/on-the-trail-of-bee-morta…
Media Contact
All latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…