New research promises faster, cheaper and more reliable microchips
A project between academia and industry is aiming to spark a world electronics revolution by producing faster, cheaper and more reliable microchips.
The University of Newcastle upon Tyne, UK, has joined forces with Amtel, on North Tyneside in the North East of England, to create ‘strained silicon’ microchips, which involves adding a material called germanium to the traditional silicon used in semiconductor manufacturing.
Atmel, whose silicon chips find applications in such diverse products as smart cards and game consoles like XBOX, is playing host to a team of five Newcastle University researchers led by top microelectronics professor Anthony O’Neill.
“With this process we can create strained silicon microchips, which will be much faster or use less battery power than conventional microchips” explained Professor Anthony O’Neill, who leads a team of 5 researchers. The team, hosted by Atmel, aim to produce the world’s first strained silicon technology, ahead of the competition.
“Microchips have doubled in performance every 18 months for the last 30 years, but the end of the road is now in sight, which means new innovations like strained silicon are needed at the leading edge of microelectronics,” added Professor O’Neill, l who has been working with strained silicon processes for almost ten years.
Atmel Managing Director Craig McInnes said: “This is great news for the North East because it brings real, commercial research and development to the region. This will help develop the knowledge-based economy which is vital for our future.
“We have the potential here for developing a brand new process which will give us cheaper and faster chips. These will be the market leaders of tomorrow. Atmel and Newcastle University have joined forces to develop some of the world’s fastest microchips.”
The research and development project based at Atmel’s North Tyneside semiconductor factory and involves joint working to unravel the complexities of working with a new material called strained silicon germanium.
Strained silicon on silicon-germanium has been tipped as one of the key emergent technologies for the next generation of semiconductors.
If the venture proves successful it will bring leading edge technology to the North East.
The two sides have entered in to a joint collaborative agreement and will share the fruits of the development if it proves to be a world beater.
Atmel will supply the manufacturing know-how to speed up the development.
The joint venture marks a break-though in collaborative working between Newcastle University and industry.
Prof O’Neill added: “This really is getting the research out of the lab into the commercial world. Working with Atmel will allow us to take the product from the drawing board to marketable reality a lot quicker than relying on the limited resources available to universities.
“Getting products to market quickly is vital in the fast-moving world of semiconductor manufacturing and development. If we are successful we will have a world first made on Tyneside.”
Media Contact
All latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…