Crystal structures light the way to optical microchip

A new class of microscopic crystal structures developed at the University of Toronto is bringing high bandwidth optical microchips one step closer to efficient, large-scale fabrication. The structures, known as photonic band gap (PBG) materials, could usher in an era of speedy computer and telecommunications networks that use light instead of electrons.

“This will be a tremendous breakthrough,” says Sajeev John, a professor in U of T’s Department of Physics and co-investigator of the study published in the June 7-13 issue of Physical Review Letters. “It’s basically a whole new set of architectures for manufacturing nearly perfect photonic band gap materials and will provide an enormous increase in the available bandwidth for the optical microchip.”

John and his team devised a photonic band gap blueprint that can be made with nanometre-scale precision by bombarding it with x-rays. The x-rays pass through a gold “mask” with an array of holes, removing portions of a polymer template below. Glass is deposited to fill in the holes and the remaining polymer burned away with heat. Silicon is then deposited throughout the void regions of the glass template and the glass finally removed with chemicals, leaving behind a pure silicon photonic band gap material.

The study was co-written with physics graduate student Ovidiu Toader and Mona Berciu, a physics professor at the University of British Columbia, and funded by the Natural Sciences and Engineering Research Council of Canada. CONTACT: Professor Sajeev John, Department of Physics, 416-978-3459, john@physics.utoronto.ca or Nicolle Wahl, U of T public affairs, 416-978-6974, nicolle.wahl@utoronto.ca

Media Contact

Nicolle Wahl U of T

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…