University Of Pittsburgh Medical Center studying promising new imaging technology
New technology developed by GE may help radiation oncologists more accurately target tumors
A new imaging technology developed by GE Medical Systems and currently being evaluated at the University of Pittsburgh Medical Center (UPMC) may allow radiation oncologists to precisely track tumor movement and avoid excess doses of radiation for patients under treatment for cancer. Preliminary results at UPMC demonstrate that Advantage™ 4D (Adv4D) limits the exposure of radiation to healthy tissue surrounding a tumor by allowing radiation oncologists to precisely visualize and assess its structure and movement.
“One of the challenges of treatment planning for radiation therapy is pinpointing radiation precisely to target a tumor and decreasing the amount of healthy tissue that may be exposed to radiation,” said Andrew Wu, Ph.D., director of medical physics at UPMC. “Tumors are akin to moving targets. As a patient inhales and exhales, the tumor moves, making it challenging to target the tumor and to avoid exposure of radiation to the area that surrounds the tumor.”
According to Dr. Wu, Adv4D is promising because it is one of the first technologies of its kind to allow physicists to perform respiratory gating – precisely following the movement of a tumor according to a patients breathing cycle.
“What makes GEs Advantage 4D CT respiratory gating system different than any other similar software is the ability to superimpose tumor or organ definitions over CT images in a movie loop,” said Bob Beckett, global manager, CT oncology for GE Medical Systems. “This unique advantage allows doctors to confidently evaluate the effects of motion on target volumes to help ensure the tumor receives the full amount of the treatment dose.”
UPMC is one of five centers across the country currently evaluating Adv4D. Results from the first 15 patients evaluated at UPMC indicate that the technology improves the ability to develop more precise treatment plans. Preliminary findings show that this technology incorporated with intensity modulated radiation therapy (IMRT) – a radiation technology that allows the delivery of extremely precise doses of radiation to destroy cancer cells while minimizing harm to surrounding normal and healthy tissues – may potentially allow lung and ovarian cancer patients to be treated with high precision and low complications.
Media Contact
More Information:
http://www.upmc.edu/All latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…