Tunable Windows To Keep Office Secrets

Secrets that zip across offices through wireless computing networks all too easily also zip through office windows into the hands of competitors – now researchers at the University of Warwick have devised a method of producing tunable surfaces that can selectively block signals from wireless networks from spilling out of the office.

Dr Christos Mias, in the University of Warwick’s School of Engineering has developed a “dipole grid based frequency–selective surface” (also known as an FSS surface) to perform this task. This grid of circuitry has the potential to be embedded in any glass window and then tuned to block the selected frequency. This ability to tune the circuit is triply useful. Firstly it means that the circuit can easily be tuned to block a different frequency if circumstances in the office change without having to remove the window or the embedded circuits. Secondly it allows for different window material variations– normally the variations in the type of glass used would mean that you would have to develop bespoke blocking circuits for each window – but by having a tunable system one can then have a one size fits all set of circuitry which can simply be tuned to match the glass type. Thirdly it can compensate for small FSS fabrication errors.

Dr Mias has already worked with colleagues in other universities and institutions to produce non-tunable FSS configurations on standard domestic glass. Both, optically transparent thin-film and opaque micromachined conductors have been employed attenuating the power of the incoming signal, at selected frequencies (above 20 GHz) by 100 to 1000 times.

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Foraminifera absorbing phosphate from ocean water to reduce pollution

Single-Celled Heroes: Foraminifera’s Power to Combat Ocean Phosphate Pollution

So-called foraminifera are found in all the world’s oceans. Now an international study led by the University of Hamburg has shown that the microorganisms, most of which bear shells, absorb…

Humans vs Machines—Who’s Better at Recognizing Speech?

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…

AI system analyzing subtle hand and facial gestures for sign language recognition.

Not Lost in Translation: AI Increases Sign Language Recognition Accuracy

Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…