Supersizing the supercomputers: What’s next?
Supercomputers excel at highly calculation-intensive tasks, such as molecular modeling and large-scale simulations, and have enabled significant scientific breakthroughs.
Yet supercomputers themselves are subject to technological advancements and redesigns that allow them to keep pace with the science they support.
The current vision of future supercomputers calls for them to be very heterogeneous–for example, rather than a central processing unit (CPU) with memory, disk and interconnect, the CPU will contain cores of smaller CPUs making up a larger whole–and have different types of processors, such as vectors and field programmable gate arrays (FPGAs). The location and type of memory will be more complex as well.
High performance components–encapsulated chunks of software that perform specific tasks–will be coupled to a dynamic framework that allows the scientists and the software to dynamically determine the algorithms or modifications to algorithms that will perform well on a particular architecture.
Multiple levels of parallelism will be explored, including parallelism at the component level, parallelism within the component, parallelism within a subroutine and threading.
These supercomputers of the future will provide orders of magnitude more computing power, but their increasing complexity also requires experts in computational science, mathematics and computer science working together to develop the software needed for the science.
Media Contact
More Information:
http://www.pnl.govAll latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
Compact LCOS Microdisplay with Fast CMOS Backplane
…for High-Speed Light Modulation. Researchers from the Fraunhofer Institute for Photonic Microsystems IPMS, in collaboration with HOLOEYE Photonics AG, have developed a compact LCOS microdisplay with high refresh rates that…
New perspectives for material detection
CRC MARIE enters third funding period: A major success for terahertz research: Scientists at the University of Duisburg-Essen and the Ruhr University Bochum have been researching mobile material detection since…
CD Laboratory at TU Graz Researches New Semiconductor Materials
Using energy- and resource-saving methods, a research team at the Institute of Inorganic Chemistry at TU Graz aims to produce high-quality doped silicon layers for the electronics and solar industries….