Supersizing the supercomputers: What’s next?
Supercomputers excel at highly calculation-intensive tasks, such as molecular modeling and large-scale simulations, and have enabled significant scientific breakthroughs.
Yet supercomputers themselves are subject to technological advancements and redesigns that allow them to keep pace with the science they support.
The current vision of future supercomputers calls for them to be very heterogeneous–for example, rather than a central processing unit (CPU) with memory, disk and interconnect, the CPU will contain cores of smaller CPUs making up a larger whole–and have different types of processors, such as vectors and field programmable gate arrays (FPGAs). The location and type of memory will be more complex as well.
High performance components–encapsulated chunks of software that perform specific tasks–will be coupled to a dynamic framework that allows the scientists and the software to dynamically determine the algorithms or modifications to algorithms that will perform well on a particular architecture.
Multiple levels of parallelism will be explored, including parallelism at the component level, parallelism within the component, parallelism within a subroutine and threading.
These supercomputers of the future will provide orders of magnitude more computing power, but their increasing complexity also requires experts in computational science, mathematics and computer science working together to develop the software needed for the science.
Media Contact
More Information:
http://www.pnl.govAll latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
Single-Celled Heroes: Foraminifera’s Power to Combat Ocean Phosphate Pollution
So-called foraminifera are found in all the world’s oceans. Now an international study led by the University of Hamburg has shown that the microorganisms, most of which bear shells, absorb…
Humans vs Machines—Who’s Better at Recognizing Speech?
Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…
Not Lost in Translation: AI Increases Sign Language Recognition Accuracy
Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…