Simulation program predicts resistivity in nanodevices
As nanoscale circuits continue to shrink, electrical resistivity increases in the wiring and limits the maximum circuit speed. A new simulation program developed by researchers at the National Institute of Standards and Technology (NIST) and George Washington University (GWU) can be used to predict such increases with greater input flexibility and model accuracy than other methods. The software program is expected to help the semiconductor industry design and test devices more efficiently and with greater cost-effectiveness.
On average, an electron can travel only 39 nanometers in pure, bulk copper at room temperature before it is scattered by thermal vibrations of the copper atoms. But, as the dimensions of the wiring shrink, additional scattering by surfaces and grain boundaries within the metal lead to undesirable increases in resistivity. The NIST/GWU computer program, described in a recent paper in Microelectronics Reliability,* enables users to examine how these additional mechanisms alter the resistivity of the thin, narrow metal lines that make up the circuit wiring.
As described in the journal article, NIST researchers used the simulation program to demonstrate that, at critical nanoscale dimensions, electron scattering from surfaces and grain boundaries have effects that are interdependent. This interdependence could not be predicted using methods previously available. The finding has implications for both achievable circuit speed and electrical measurements of the dimensions of thin, narrow lines.
Media Contact
More Information:
http://www.nist.govAll latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…