Semiconductors for Cool Computers

However, physicists of the University of Würzburg are paving the way for them: In the American scientific journal “Science”, the researchers now present a semiconductor that transmits electric current without heating up in the process.

This new type of semiconductor consists of mercury telluride and mercury cadmium telluride. In a sophisticated procedure, the Würzburg physicists apply these two materials to penny-sized crystal wafers in alternate ultra-thin layers. “The individual layers are only seven to ten nanometers thin,” says Professor Laurens Molenkamp. In other words, inconceivably fine: A nanometer is one millionth of a millimeter.

Tiny wire fabricated

In order to analyze the conductivity of the layered material, the physicists structured its surface, using lithographic patterning methods. They sort of created tiny wires in a specific pattern, e.g. an H-shaped structure.

“The material was expected to become an insulator under certain conditions – at very low temperatures, for instance. All conventional semiconductors exhibit this behavior,” explains Professor Hartmut Buhmann, who works in Molenkamp's team.

Material reacted in an unexpected way

The physicists were in for a surprise, when the material behaved differently: The electrons concentrated at the edges of the H-shaped structure. In addition to this, they were freely moveable there – without any resistance and thus without dissipating heat. According to the physicists, this characteristic is based wholly on the materials and the way they are layered. The form of the structure – whether H or X – is irrelevant.

Not yet ready for application

This new type of semiconductor is not yet ready for real-world applications, though. The effect described above occurs only at extremely low temperatures below minus 170 degrees Celsius. Therefore, the Würzburg researchers now intend to develop other materials, which produce the same effect at significantly higher temperatures.

“We are going to use bismuth compounds for this purpose,” says Laurens Molenkamp. However, they first have to work out a procedure allowing them to stack these materials as well in neat wafer-thin layers.

To stay cool is important for computers

When computers are processing, they heat up. But if temperatures get too high, the function of computer chips is adversely affected, which means they need cooling. The cooling is provided by fans on board the PC or by air conditioning systems in large computer rooms. Some high-performance computers of today are already equipped with water-cooling systems.

So heat is a factor that considerably limits the development of faster computers. This is because more and more transistors, working ever faster, have to be tightly packed on the chips in order to reach higher levels of performance. “Consequently, a higher amount of electric current passes through the chips, inducing an increased heat build-up in the components,” explains Hartmut Buhmann. Hence, the advent of components that conduct electric current without generating heat would be likely to give a big push to the evolution of computers.

Nonlocal Transport in the Quantum Spin Hall State, Andreas Roth, Christoph Brüne, Hartmut Buhmann, Laurens W. Molenkamp, Joseph Maciejko, Xiao-Liang Qi, Shou-Cheng Zhang, Science, 17. Juli 2009, Vol. 325, no. 5938, pp. 294-297, DOI: 10.1126/science.1174736

Contact

Prof. Dr. Laurens Molenkamp, Chair of Experimental Physics III, University of Würzburg, phone ++49 (931) 888-4925, laurens.molenkamp@physik.uni-wuerzburg.de

Prof. Dr. Hartmut Buhmann, phone ++49 (931) 888-5778, hartmut.buhmann@physik.uni-wuerzburg.de

Media Contact

Robert Emmerich idw

More Information:

http://www.uni-wuerzburg.de

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…