Student innovation at Rensselaer transmits data and power wirelessly through submarine hulls
Steel walls are no match for Tristan Lawry. The doctoral student at Rensselaer Polytechnic Institute has developed and demonstrated an innovative new system that uses ultrasound to simultaneously transmit large quantities of data and power wirelessly through thick metal walls, like the hulls of ships and submarines.
Lawry, a student in the Department of Electrical, Computer, and Systems Engineering at Rensselaer, is one of three finalists for the 2011 $30,000 Lemelson-MIT Rensselaer Student Prize. A public ceremony announcing this year’s winner will be held at 7 p.m. on Wednesday, March 9 in the auditorium of the Rensselaer Center for Biotechnology and Interdisciplinary Studies. For more information on the ceremony visit: http://www.eng.rpi.edu/lemelson/
Lawry’s project is titled “A High-Performance System for Wireless Transmission of Power and Data Through Solid Metallic Enclosures,” and his faculty adviser is Gary Saulnier, professor of electrical, computer, and systems engineering at Rensselaer.
In our increasingly tetherless world, wires have been all but replaced by more convenient wireless connections in homes and offices – everything from phones and accessing the Internet to keyboards and printers. In the area of defense, a progression from wired to wireless systems presents an opportunity to improve the safety of naval vessels. Presently, to install critical safety sensors on the exterior of ships and submarines, the U.S. Navy is forced to drill holes in the hull through which cables for data and power transmission are run. Each hole increases the risk of potentially serious issues, including leaks and structural failure. Additionally, installing these sensors on commissioned vessels requires the use of a drydock or cofferdam, which can take months and cost millions of dollars.
Lawry’s invention solves this problem. Unlike conventional electromagnetic wireless systems, which are ineffective at transmitting power and data through vessel hulls because of the “Faraday cage” shielding effects they present, his patent-pending system uses ultrasound – high-frequency acoustic waves –to easily propagate signals through thick metals and other solids. Piezoelectric transducers are used to convert electrical signals into acoustic signals and vice versa, allowing his system to form wireless electrical bridges across these barriers. Lawry’s clever design features separate non-interfering ultrasonic channels for independent data and power transmission.
With this new system, Lawry has demonstrated the simultaneous, continuous delivery of 50 watts of power and 12.4 megabytes per second (Mbps) of data through a 2.5-inch-thick solid steel block in real time. These results far surpass all known previously published systems capable of simultaneous data and power transmission through metal. With only minor modifications, Lawry said he’s confident his design will have the capacity to support much higher power levels and data rates. His invention uses a powerful communication technology that allows the transmission system to adapt to non-ideal conditions and mechanical variations over time. This is critical for ensuring successful operation of the system in real-world conditions outside of a controlled laboratory environment.
Lawry’s complex combination of electronic and acoustic hardware, signal generation and detection technology, and power generation and collection equipment shares many characteristics with a state-of-the-art communications system such as a cellular phone. Using the three main building blocks of electrical engineering — power, communications, and computing — Lawry has developed a system that can communicate through a thick metal wall without the need for a battery or any supplemental power source. This means sensors on the outer hull of submarines can be made to work with systems on the other side of the wall for many years without the need for human intervention.
In addition to the hulls of ships and submarines, Lawry said his wireless data and power system could benefit many other applications where it is necessary or advantageous to continually power and monitor sensor networks in isolated environments. For example, his system could be used to power and communicate with sensors in nuclear reactors, chemical processing equipment, oil drilling equipment and pipelines, armored vehicles, un-manned underwater deep-sea exploration vehicles, or even space shuttles and satellites.
When not in the lab, Lawry enjoys staying active by playing soccer, hockey, and an exciting round of paintball. At Rensselaer, the Shrewsbury, Vt., native has founded and organized a community outreach program with the Eta Kappa Nu honor society to deliver entertaining science and engineering presentations to local elementary and high school students. Lawry was recently married. His wife, Allison, has provided unwavering support and inspiration throughout his time as a student at Rensselaer. Lawry’s mother, a kindergarten teacher back home in Vermont, and his twin older brothers are rooting for him to win the 2011 Lemelson-MIT Rensselaer Student Prize.
Lawry received dual bachelor’s degrees in electrical engineering and computer and systems engineering, as well as his master’s degree in electrical engineering, from Rensselaer and has maintained a perfect 4.0 grade point average over his eight years at the Institute. He won the Rensselaer Founders Award of Excellence in 2009, the Rensselaer Academic Award of Excellence in 2007, and expects to complete his doctorate and graduate this May.
About the $30,000 Lemelson-MIT Rensselaer Student Prize
The $30,000 Lemelson-MIT Rensselaer Student Prize is funded through a partnership with the Lemelson-MIT Program, which has awarded the $30,000 Lemelson-MIT Student Prize to outstanding student inventors at MIT since 1995.
About the Lemelson-Mit Program
Celebrating innovation, inspiring youth
The Lemelson-MIT Program celebrates outstanding innovators and inspires young people to pursue creative lives and careers through invention.
Jerome H. Lemelson, one of U.S. history’s most prolific inventors, and his wife, Dorothy, founded the Lemelson-MIT Program at the Massachusetts Institute of Technology in 1994. It is funded by the Lemelson Foundation and administered by the School of Engineering. The Foundation sparks, sustains and celebrates innovation and the inventive spirit. It supports projects in the U.S. and developing countries that nurture innovators and unleash invention to advance economic, social and environmentally sustainable development. To date the Lemelson Foundation has donated or committed more than U.S. $150 million in support of its mission. http://web.mit.edu/invent/
For information on past winners of the $30,000 Lemelson-MIT Rensselaer Student Prize, visit:
Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage
Javad Rafiee’s graphene innovation could lead to more efficient hydrogen-powered vehicles
http://news.rpi.edu/update.do?artcenterkey=2690
Student Developer of Versatile “G-gels” Wins $30,000 Lemelson-Rensselaer Prize
Yuehua “Tony” Yu’s innovation could lead to new medical devices, drug-delivery technologies
http://news.rpi.edu/update.do?artcenterkey=2538
Student Develops New LED, Wins $30,000 Lemelson-Rensselaer Prize
Martin Schubert’s polarized LED could improve LCD displays, save energy
http://news.rpi.edu/update.do?artcenterkey=2406
Handheld “T-ray” Device Earns New $30,000 Lemelson-Rensselaer Student Prize
Brian Schulkin’s “Mini-Z” spots cracks in space shuttle foam, detects tumors in tissue
http://news.rpi.edu/update.do?artcenterkey=1944
Published March 7, 2011 Contact: Michael Mullaney
Phone: (518) 276-6161
E-mail: mullam@rpi.edu
Media Contact
All latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…