TUM professor develops an energy-saving AI chip

Prof. Hussam Amrouch develops powerful AI Chip for energy-intensive applications.
© Andreas Heddergott / TUM

Hussam Amrouch has developed an AI-ready architecture that is twice as powerful as comparable in-memory computing approaches. As reported in the journal Nature, the professor at the Technical University of Munich (TUM) applies a new computational paradigm using special circuits known as ferroelectric field effect transistors (FeFETs). Within a few years, this could prove useful for generative AI, deep learning algorithms and robotic applications.

  • The latest AI chips deliver twice the performance of their predecessors.
  • New AI chips are based on the concept of ferroelectric field effect transistors.
  • It will be at least three to five years before the first practicable in-memory chips are available.

The basic idea is simple: unlike previous chips, where only calculations were carried out on transistors, they are now the location of data storage as well. That saves time and energy. “As a result, the performance of the chips is also boosted,” says Hussam Amrouch, a professor of AI processor design at the Technical University of Munich (TUM). The transistors on which he performs calculations and stores data measure just 28 nanometers, with millions of them placed on each of the new AI chips. The chips of the future will have to be faster and more efficient than earlier ones. Consequently, they cannot heat up as quickly. This is essential if they are to support such applications as real-time calculations when a drone is in flight, for example. “Tasks like this are extremely complex and energy-hungry for a computer,” explains the professor.

Modern chips: many steps, low energy consumption

These key requirements for a chip are summed up mathematically by the parameter TOPS/W: “tera-operations per second per watt”. This can be seen as the currency for the chips of the future. The question is how many trillion operations (TOP) a processor can perform per second (S) when provided with one watt (W) of power. The new AI chip, developed in a collaboration between Bosch and Fraunhofer IMPS and supported in the production process by the US company GlobalFoundries, can deliver 885 TOPS/W. This makes it twice as powerful as comparable AI chips, including a MRAM chip by Samsung. CMOS chips, which are now commonly used, operate in the range of 10–20 TOPS/W. This is demonstrated in results recently published in Nature.

In-memory computing works like the human brain

The researchers borrowed the principle of modern chip architecture from humans. “In the brain, neurons handle the processing of signals, while synapses are capable of remembering this information,” says Amrouch, describing how people are able to learn and recall complex interrelationships. To do this, the chip uses “ferroelectric” (FeFET) transistors. These are electronic switches that incorporate special additional characteristics (reversal of poles when a voltage is applied) and can store information even when cut off from the power source. In addition, they guarantee the simultaneous storage and processing of data within the transistors. “Now we can build highly efficient chipsets that can be used for such applications as deep learning, generative AI or robotics, for example where data have to be processed where they are generated,” believes Amrouch.

Market-ready chips will require interdisciplinary collaboration

The goal is to use the chip to run deep learning algorithms, recognize objects in space or process data from drones in flight with no time lag. However, the professor from the integrated Munich Institute of Robotics and Machine Intelligence (MIRMI) at TUM believes that it will be a few years before this is achieved. He thinks that it will be three to five years, at the soonest, before the first in-memory chips suitable for real-world applications become available. One reason for this, among others, lies in the security requirements of industry. Before a technology of this kind can be used in the automotive industry, for example, it is not enough for it to function reliably. It also has to meet the specific criteria of the sector. “This again highlights the importance of interdisciplinary collaboration with researchers from various disciplines such as computer science, informatics and electrical engineering,” says the hardware expert Amrouch. He sees this as a special strength of MIRMI.

Additional editorial information

Photo material: http://go.tum.de/440008http://go.tum.de/073250http://go.tum.de/647235

Wissenschaftliche Ansprechpartner:

Hussam Amrouch
Professor of AI Processor Design
Technical University of Munich (TUM)
amrouch@tum.de

Originalpublikation:

Taha Soliman, Swetaki Chatterjee, Nellie Laleni, Franz Müller, Tobias Kirchner, Norbert Wehn, Thomas Kämpfe, Yogesh Singh Chauhan & Hussam Amrouch
First demonstration of in-memory computing crossbar using multi-level Cell FeFET
Nature Communications volume 14, Article number: 6348 (2023)
https://www.nature.com/articles/s41467-023-42110-y
(This article was chosen as an Editors’ Highlight: one of the top 50 recent articles in Nature.)

https://www.tum.de/en/news-and-events/all-news/press-releases/details/tum-professor-develops-an-energy-saving-ai-chip

Media Contact

Andreas Schmitz Corporate Communications Center
Technische Universität München

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…