Nanolane revolutionises conventional microscopes with Sarfus Mapping Lite
French-based Nanolane has recently created easy-to-use Sarfus Mapping Lite, a plug-in piece of apparatus, the main components of which are a set of Surf microscope slides, step-height standards and a powerful piece of software. Sarfus Mapping Lite fits with all optical microscopes that use reflected light. Thanks to the technology developed by Nanolane, what has remained invisible to an optical microscope for so long is now revealed clearly.
Surf slides replace ordinary microscope glass slides and are where users deposit samples. The users then handle the optical microscope as usual, apart from the fact that the contrast enhancement brought about by Surf is such that they can see nano-objects in the shape of films, tubes or particles directly through eyepieces, i.e. with the naked eye.
The data conversion software included in the Sarfus Mapping Lite package takes a Charged Coupled Device (CCD) camera-obtained 2D colour image and provides a 3D thickness map of a nanometric sample. To do so, the optical instrument, i.e. the combination of the optical microscope and colour camera, is calibrated. This calibration occurs thanks to a series of nanometric step-height standards that are traceable to the ISO 17025 standard. These standards mean that a detection limit, which can be as high as 0.1nm (instrument dependent), is guaranteed.
Up until now, Surf-slide users were able to sense and image nanometric objects, such as nanotubes, nanowires, DNA strands, and nanoparticles. With Sarfus Mapping Lite, they will also be able to measure thin films and surface treatment of items with nanometric thickness.
The benefits one gains from adding Sarfus Mapping Lite to a microscope, as compared to the current nanocharacterisation or imaging tools, are, above all, related to its excellent accessibility and user friendliness.
Real-time image acquisition makes it possible to record fast dynamic phenomena, depending on the camera's capacities. A selectable field of view, ranging from a few µm² to several mm², depending on magnification, gives users the flexibility to study their samples globally. This global studying is useful for locating regions of interest (ROIs). The selectable field of view also allows samples to be studied locally, so as to investigate micro- to sub-micro-details. Additionally, the viewing technique is non-contact in nature and, therefore, truly non-destructive.
Applications of Sarfus Mapping Lite are many, from thin-film characterisation (for organics, inorganics, liquid crystals and lithography) to biological systems (such as biochips and biofilms), among many others. More fundamental research-related applications include nanopatterns, Langmuir-Blodgett films, and self-assembled monolayers(SAMs), for example.
About Nanolane
Nanolane, the nanotechnologies department of Eolane of France, develops and sells scientific instruments and scientific-related consumables in the field of nanotechnology.
Eolane is an electronic manufacturing services (EMS) business whose 2,400 members of staff, working for its many subsidiaries, generate an annual turnover of about €300 million. Eolane operates in a range of complementary fields encompassing technology and industry.
Nanolane's Sarfus Mapping Lite is a package that includes a number of items, with, in particular, a set of Surf slides, some step-height standards, and a powerful piece of software. It fits with all optical microscopes that use reflected light, allowing what has remained invisible to an optical microscope for so long to be clearly revealed.
For further information about Eolane, please go to: www.eolane.com
For further information about Surfs, please go to: www.nano-microscopy.com
For further information about Nanolane, please go to: www.nano-lane.com
For further information, please contact :
Quote ref. : FTPB3696
Ms Katherine WOODS – Press Officer
UBIFRANCE Press Office in London
Tel: +44 (0) 207 024 3640
katherine.woods@ubifrance.fr
Media Contact
More Information:
http://www.ubifrance.com/uk/All latest news from the category: Innovative Products
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…