'I can hear a building over there'
It is common knowledge that bats and dolphins echolocate, emitting bursts of sounds and then listening to the echoes that bounce back to detect objects. What is less well-known is that people can echolocate too.
In fact, there are blind people who have learned to make clicks with their mouths and to use the returning echoes from those clicks to sense their surroundings. Some of these individuals are so adept at echolocation that they can use this skill to navigate unknown environments, and participate in activities such as mountain biking and basketball.
Researchers at The University of Western Ontario's Centre for Brain and Mind (London, Ontario, Canada) have recently shown that blind echolocation experts use what is normally the 'visual' part of their brain to process the clicks and echoes. The study, appearing this month in the scientific journal PLoS ONE, is the first to investigate the neural basis of natural human echolocation.
Senior author Mel Goodale, Canada Research Chair in Visual Neuroscience, and Director of the Centre for Brain and Mind, says, “It is clear echolocation enables blind people to do things otherwise thought to be impossible without vision and can provide blind and visually-impaired people with a high degree of independence.”
Goodale and his team of researchers first made recordings of the clicks and their very faint echoes using tiny microphones in the ears of the blind echolocators as they stood outside and tried to identify different objects such as a car, a flag pole, and a tree. The researchers then played the recorded sounds back to the echolocators while their brain activity was being measured in Western's state-of-the-art 3T functional magnetic resonance imaging (fMRI) brain scanner.
Remarkably, when the echolocation recordings were played back to the blind experts, not only did they perceive the objects based on the echoes, but they also showed activity in those areas of their brain that normally process visual information in sighted people. Most interestingly, the brain areas that process auditory information were no more activated by sound recordings of outdoor scenes containing echoes than they were by sound recordings of outdoor scenes with the echoes removed.
When the same experiment was carried out with sighted control people who did not echolocate, these individuals could not perceive the objects, and neither did their brain show any echo-related activity, suggesting visual brain areas play an important role for echolocation in blind people.
According to Goodale, this research will provide a deeper understanding of brain function, particularly how the senses are processed and what happens neurologically when one sense is lost.
Media contacts:
Mel Goodale, Director, Centre for Brain and Mind: 519-661-2070 or mgoodale@uwo.ca
Marcia Steyaert, Communications & Public Affairs: 519-661-2111 ext. 85467 or steyaert@uwo.ca
For a feature story on and photos of Daniel Kish, one of the participants in the study, visit http://communications.uwo.ca/western_news/stories/2011/May/seeing_through_
sound_how_a_tongue_click_gave_one_man_independence.html.
Kish will return to Western's Centre for Brain and Mind in June for further echolocation studies.
Media Contact
More Information:
http://www.uwo.caAll latest news from the category: Interdisciplinary Research
News and developments from the field of interdisciplinary research.
Among other topics, you can find stimulating reports and articles related to microsystems, emotions research, futures research and stratospheric research.
Newest articles
Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans
The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…