Tekniker-IK4 leads robotics project
Moreover, university teams outstanding in robotics research have also collaborated – from the Carlos III University in Madrid, the Polytechnic University of Catalonia, the University of Seville and the University of the Basque Country. The project is to last 30 months and has a budget of nearly 2 M€, of which somewhat more than 650,000 € has been allocated to Tekniker-IK4, coordinator and proponent of the idea.
The principal objective of the project is the generation of the technologies necessary for the development of mobile robots able to carry out complex tasks with a high degree of autonomy and capacity for collaboration. These robots, moreover, have to share tasks with people in the most friendly and natural way possible.
The technological areas in which solutions are to be developed are:
The perception of the robots
Using sensors and sensorial systems which, with a holistic approach, are capable of recognising the complex environment (given that the idea is for exterior applications, over unknown terrain and changing situations).
Communications
Between the robots themselves and with humans, in such a way that mutual collaboration leads to success in the targets set.
Person-robot interaction
Here the idea is that the robot is not limited to just obeying control orders that are formulated electronically, but they are also enabled to interact with their human collaborators and in the most natural manner, including with voice and, above all, with gestures which, for tasks in the exterior and in extreme conditions, may be the most reliable channel of communication.
Autonomous behaviour
In this case the idea is to resolve complex problems of navigation on surfaces and in spaces that are difficult and equip the robots with self-perception in such a way that they are aware of their state, can undertake self-diagnosis and adopt measures in case of breakdown or limitations to their capacities.
Mecatronic components
The problem to be tackled in principle is the movement through and overcoming of obstacles in all media, terrestrial, aquatic and aerial.
It is hoped to materialise all these developments in a terrestrial robot prototype which, in all probability, will be a test bank for solutions to emergency situations such as forest fires, rescues, etc. In order to know the peculiarities and skills these tasks require and thereby to orientate the prototype accordingly, contacts have been made with SOS Deia (the Basque Emergency Rescue Service) and it also expected to know other viewpoints from other autonomous emergency services.
The project is one of 6 which, at a Spanish State-wide level, is being financed by the State Office for Small and Medium Enterprises of the Ministry of Industry, Tourism and Trade, through the programme of partnered projects designed to stimulate a synergic effect from the collaboration of various technological centres.
Media Contact
More Information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1599&hizk=IAll latest news from the category: Interdisciplinary Research
News and developments from the field of interdisciplinary research.
Among other topics, you can find stimulating reports and articles related to microsystems, emotions research, futures research and stratospheric research.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…