Studies of spider’s silk reveal unusual strength
University of California, Santa Barbara scientists and U.S. Army researchers are making progress in the study of spider dragline silk, according to recently published proceedings of the National Academy of Sciences.
The protein that lets spiders drop and helps the web to catch prey is what interests the researchers. The molecules are designed to be pulled; they are elastic and very strong. The silk can be extended 30 to 50 percent of its length before it breaks. It is stronger than steel and comparable in strength to Kevlar.
“The last decade has seen a significant increase in the scientific literature on spider dragline silk,” according to the proceedings. “This interest is due to the impressive mechanical properties of spider dragline silk, at a time when biomaterials and biomimetics are both exciting interest in the rapidly growing field of materials research.”
And why is the U.S. Army interested in this material? “The major interest is to use it as material for bulletproof vests, armor and tethers; there are many possibilities,” said first author Emin Oroudjev, a researcher at UC Santa Barbara.
At UC Santa Barbara, the focus is on the basic research of learning how the protein folds and how it is organized in the silk fiber. Using atomic force microscopy and a molecular puller, the researchers are getting clues from imaging and pulling the protein. These observations help the researchers to model what is happening in the silk gland when silk proteins are assembling into spider dragline silk fibers.
They found that when the protein unfolds it is modular. It has sacrificial bonds that open, and then reform when the load lifts. This follows a pattern that has been found in other load-bearing proteins.
Spider silk is a composite material. It has crystalline parts and more rubber-like stretchy parts. The researchers found that single molecules have both, explained Helen Hansma, co-author and adjunct associate professor of physics. Spider silk is a composite material that is novel compared to the other load-bearing proteins that have been studied.
Contacts:
Emin Oroudjev — oroudjev@ia.ucsb.edu, (805) 893-3672
Helen Hansma – hhhansma@physics.ucsb.edu, (805) 893-3881
Media Contact
All latest news from the category: Interdisciplinary Research
News and developments from the field of interdisciplinary research.
Among other topics, you can find stimulating reports and articles related to microsystems, emotions research, futures research and stratospheric research.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…