Universities in £1.5m drive to cut cost of solar power
The three and a half year project, funded by the Engineering and Physical Sciences Research Council (EPSRC), will investigate a number of new and novel solar cell designs, in an attempt to produce a more efficient system for generating green energy.
The consortium of researchers, led by Professor Paul O'Brien from The University of Manchester's School of Chemistry and Professor Jenny Nelson from The Department of Physics at Imperial College London, will investigate new designs that utilise intrinsically inexpensive materials and cheap fabrication methodologies.
The research team are aiming to build demonstration hybrid solar cells that have the long-term potential to be mass-produced and to achieve an energy conversion efficiency approaching ten per cent.
The cells will be made from both organic polymeric carbon-based materials and small particles of inorganic semiconductors.
Most designs are expected to draw on nanotechnology, with researchers planning to use so-called PbS nanorods – small cylinders of lead sulphide that are around 100 times smaller than a human hair.
Academics will also use semiconductor quantum dots – extremely small particles measuring around one ten-millionth of an inch – to absorb light.
Professor O'Brien said: “Alternatives to fossil fuel-based electricity sources are needed urgently, to reduce the environmental impact of electrical power generation and to secure our supply of electricity in the future.
“The widespread implementation of solar electricity requires a significant reduction in cost and a successful outcome to this project has the potential to provide a step-change solar cell technology.”
Professor Nelson said: “A major reduction in the cost of solar power through the use of low-cost materials could seriously accelerate the take-up of renewable energy technology and make it much more accessible to the developing world.”
The project is funded equally by the EPSRC's Materials and Energy programmes and will employ four postdoctoral research associates and two PhD students across the two universities.
By spreading the work across chemistry, electrical engineering, physics and materials departments, the consortium will investigate areas such as materials synthesis and characterisation, device fabrication and system integration.
Research at the University of Manchester will involve academics from the School of Chemistry, The School of Electronic and Electrical Engineering, The School of Materials and The School of Physics and Astronomy – making it a truly interdisciplinary project.
The funding award is the latest boost for The University of Manchester's School of Chemistry, which will officially open an expansive new £14m teaching and research extension tomorrow (Wednesday 28 February 2007).
Media Contact
More Information:
http://www.manchester.ac.ukAll latest news from the category: Interdisciplinary Research
News and developments from the field of interdisciplinary research.
Among other topics, you can find stimulating reports and articles related to microsystems, emotions research, futures research and stratospheric research.
Newest articles
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…
ASXL1 Mutation: The Hidden Trigger Behind Blood Cancers and Inflammation
Scientists show how a mutated gene harms red and white blood cells. LA JOLLA, CA—Scientists at La Jolla Institute for Immunology (LJI) have discovered how a mutated gene kicks off…