A glimpse into the genetic basis of schizophrenia

Artistic view of how life feels after the diagnosis of schizophrenia. © Glen Brady, Queensland Centre for Mental Health Research

For schizophrenia, biomarkers or supportive diagnostic tests are scarce and for many patients the efficacy of pharmacological treatment is limited. The PGC-SZ (Psychiatric Genomics Consortium – Schizophrenia), including scientists from the Max Planck Institute of Psychiatry in Munich, has now identified more than 100 genetic loci related to schizophrenia.

The results point to molecules that are currently the most promising targets for therapeutics also aligning well with recent theories about factors causing schizophrenia. The novel findings provide a relevant foundation for mechanistic and treatment development studies.

Schizophrenia is known to be a heritable disorder, highlighting inherited genetic variants to be a key causative for this disease. Due to the scarcity of biomarkers or supportive diagnostic tests, diagnosis is almost exclusively clinician-based. Furthermore, although pharmacological treatments are available for schizophrenia, their efficacy is limited for many patients.

The PGC-SZ, including Bertram Müller-Myhsok, Research Group Leader at the Max Planck Institute of Psychiatry in Munich, has now performed a genome-wide association study and identified more than 100 genomic loci that are significantly related to schizophrenia.

“Our findings include molecules that are currently the most promising targets for therapeutics and point to molecular systems aligning with the predominant theories on factors causing schizophrenia,” states Bertram Müller-Myhsok. “This might suggest that the many novel findings we report also provide a relevant foundation for treatment development studies.”

Particularly variations in genes related to altered glutamatergic synaptic and calcium channel function might serve as a panel of biomarkers for future diagnosis of schizophrenia or might allow better understanding of the molecular mechanisms underlying the disease.

Such associations with genes playing a role in the central nervous system are most relevant for the development of treatment strategies. The results of the study verified genetic associations with the gene coding for the type 2 dopaminergic receptor (DRD2).

“All available antipsychotic drugs are thought to exert their main therapeutic effects through blockade of DRD2,” explains Bertram Müller-Myhsok. “Since the discovery of this mechanism over 60 years ago, no new antipsychotic drug of proven efficacy has been developed based on other target molecules.” Thus, therapeutic stasis is in large part a consequence of the fact that the disease-causing mechanisms are still unknown. Identifying the causes of schizophrenia is therefore a critical step towards improving treatment and outcome for patients suffering from this disorder.

Contact 

Dr. Bertram Müller-Myhsok

Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-246

 

Anna Niedl

Press and Public Relations

Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-263
Fax: +49 89 30622-370

 

Original publication

 
Schizophrenia Working Group of the Psychiatric Genomics Consortium.
Biological insights from 108 schizophrenia-associated genetic loci.
Nature, 22. Juli 2014 (doi:10.1038/nature13595)AN/HR

Media Contact

Dr. Bertram Müller-Myhsok Max-Planck-Institute

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-performance cerium oxide-based thermal switch for efficient heat flow control and sustainable energy systems.

Durable, Efficient, Sustainable: The Rise of Cerium Oxide Thermal Switches

Groundbreaking cerium oxide-based thermal switches achieve remarkable performance, transforming heat flow control with sustainable and efficient technology. Cerium Oxide-Based Thermal Switches Revolutionize Heat Flow Control Thermal switches, which electrically control…

Industrial robots lowering CO2 emissions in manufacturing for sustainable global trade.

How Industrial Robots are Reducing Emissions in Global Manufacturing

A new study explores the intersection of industrial automation and environmental sustainability, focusing on the role of industrial robots in reducing the carbon intensity of manufacturing exports. The research demonstrates…

3D-printed bioceramic grafts for craniomaxillofacial bone regeneration, showcasing precision medicine and patient-specific solutions.

Patients Can Heal Through Precise, Personalized Bioceramic Grafts

A recent review is transforming the landscape of craniomaxillofacial bone regeneration with the introduction of personalized bioceramic grafts. This pioneering research explores the fabrication and clinical potential of synthetic grafts…