A spicy silver lining

Silver nanoparticles are synthesized with the help of the spicy habanero pepper. From the Journal of Nanophotonics, doi 10.1117/1.JNP.14.036012
Credit: SPIE

Habanero peppers provide ecofriendly way to synthesize silver nanoparticles

Distinctive thermal and electrical characteristics make silver nanoparticles perfect for optics and biosensing applications. One increasingly popular application for the nanoparticles is as an antibacterial coating. Silver nanoparticle coatings are used in fabrics, footwear, computer keyboards, and orthopedic and other biomedical devices.

The process of synthesizing the silver nanoparticles involves chemical reduction of silver nitrate salt (AgNO3). A pair of reagents breaks down the AgNO3 molecules, releasing silver ions that are “reduced” through the acceptance of electrons. This favors the formation of silver nanoparticles. However, the reagents are reported to have toxic properties, so since the early 2000s, ecofriendly methods have been sought to reduce silver nitrate and other metal nanoparticles, including gold and platinum.

Researchers David Omar Oseguera-Galindo and Eden Oceguera-Contreras, both of the University of Guadalajara, Mexico, and Dario Pozas-Zepeda of the University of Colima, Mexico, recently studied the effect of habanero pepper in the synthesis of silver nanoparticles. Their research, published in the Journal of Nanophotonics, resulted in a simple, low-cost, ecofriendly method of obtaining silver nanoparticles.

Habaneros were chosen not only for their antioxidant content but also their economic importance as a traditional crop in Mexico. Previous studies showed that high antioxidant capacity promoted the formation of the nanoparticles. Other plants, such as aloe vera, coconut extract, green tea, pineapple, and garlic cloves, have been used in the synthesis of nanoparticles.

The researchers measured pH and oxidation reduction potential–a molecule’s ability to gain or lose electrons–in real time to explain the kinetic performance of the nanoparticles. They also suggested an explanation about how the biomolecules may affect nanoparticle formation. Habanero pepper has evolved antioxidant machinery that decreases the effect of oxidative stress. The antioxidants are key to stabilizing molecules through reducing and scavenging electrons.

“The novelty of this research is that it offers a schematic of silver nanoparticle formation by the biosynthesis method,” Oseguera-Galindo said. “In this schematic is included a possible mechanism of the biomolecules and its effect in the silver ion reduction for favoring nanoparticle formation.”

Experimental results showed that samples prepared using 0.001 M and 0.005 M of AgNO3 yielded particles with an average size of 19.3 and 26.4 nm. The nanoparticles prepared with 0.005 M had an absorption peak shifted toward a larger wavelength, which was expected because these nanoparticles also had a bigger average size.

In a second experiment, the researchers used varying concentrations of habanero (10, 50, and 100 mL), monitoring the pH and oxidation reduction potential. The 100-mL sample had the most intense absorption peak and the highest pH decrease, indicating the most nanoparticle production. This sample had more biomolecules, consistent with more proton removal, which would increase the number of electrons available for the reduction of silver ions.

Thanks to this green method of synthesizing silver nanoparticles, habanero peppers may soon be used to synthesize the antimicrobial silver nanoparticles in your next pair of running shorts or that next squirt of antibacterial hand sanitizer, without toxic effects.

Read the original research article in the Journal of Nanophotonics: David Oseguera-Galindo, Eden Oceguera-Contreras, Dario Pozas-Zepeda, J. Nanophoton. 14(3), 036012 (2020) doi: 10.1117/1.JNP.14.036012

Media Contact

Steffens
SPIE--International Society for Optics and Photonics

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…