AI helps map the postal workers in cells

A 3D model of the Commander complex, a bundle of proteins that act as postal workers in cells.
Credit: Institute for Molecular Bioscience The University of Queensland

Researchers have used artificial intelligence to build a 3D model of the Commander complex, a bundle of proteins that act as ‘postal workers’ in cells, to better understand dementia and infectious diseases including COVID-19.

University of Queensland researchers have used artificial intelligence to build a 3D map of key cell components to better understand dementia and infectious diseases including COVID-19.

Professor Brett Collins from UQ’s Institute for Molecular Bioscience and Professor Pete Cullen from the University of Bristol led a team that modelled the 16 subunit Commander complex, a bundle of proteins that act as ‘postal workers’ in cells.

“Just as the postal system has processes to transport and sort cargo, cells in our bodies have molecular machines that transport and sort proteins,” Professor Collins said.

“Cargo transport is all about getting the right parcels to the right destination at the right time and in cells, the Commander complex controls this system to ensure the right amount of protein is delivered to the right place.”

This protein transport system is implicated in many diseases including heart disease, Alzheimer’s disease and infections.

“Knowing the 3D shape of these proteins helps us understand how they function, why mutations cause disease, and how to design drugs to target them in the future,” Professor Collins said.

“Viruses such as SARS-CoV-2 – which causes COVID-19 – and human papilloma virus (HPV) which can lead to cancer need the Commander complex to infect cells and it has  been linked to the transport of the amyloid protein in Alzheimer’s disease.

“Mutations in the Commander complex disrupt the transport of lipids into cells, causing high cholesterol and heart defects in people with the rare Ritscher-Schinzel syndrome which is characterised by intellectual disability and development delay.

“Knowing the structure of the Commander complex means we can better understand how this happens and advance our understanding of how it is involved in disease.”

The international team used state-of-the-art electron microscopy and machine learning methods to decipher the structure of the entire Commander protein complex.

Professor Cullen said mapping the complete structure of the Commander complex would not have been possible even 2 years ago without these new technologies.

The team also included Dr Michael Healy from IMB, Dr Kerrie McNally from the University of Cambridge and Rebeka Butkovic and Molly Chilton from the University of Bristol.

This research was funded by organisations including the National Health and Medical Research Council (Australia), Medical Research Council (UK) and the Wellcome Trust.

The research is published in Cell.

Video: https://youtu.be/CnLqBNh96sU

Journal: Cell
DOI: 10.1016/j.cell.2023.04.003
Method of Research: Computational simulation/modeling
Subject of Research: Not applicable
Article Title: Structure of the endosomal Commander complex linked to Ritscher-Schinzel syndrome
Article Publication Date: 11-May-2023

Media Contact

Bronwyn Adams
University of Queensland
b.adams@imb.uq.edu.au
Cell: 405 661 856

Expert Contact

Joanne Fryer / Caroline Clancy
University of Bristol media team
joanne.fryer@bristol.ac.uk
Office: +44 (0)7747 768805 (Mon-Wed)
Cell: +44 (0)7776 170238 (Wed- Fri)

www.bristol.ac.uk

Media Contact

Bronwyn Adams
University of Queensland

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…