Ancient viral elements in RNA kickstart bone repair

A pro-regenerative therapy developed by KAUST researchers could could have many applications, from corneal repair to skin-protective cosmetics.
Credit: © 2024 KAUST

Around half of the human genome is composed of DNA fragments originating from ancient viruses. These “transposable elements” (TEs) are now known to play various roles in modulating gene expression and disease development. Now, an international team led by KAUST researchers has shown that a common transposable element called LINE-1 RNA plays a positive role in triggering bone repair, with potential applications in treating osteoporosis and many other diseases[1].

“Once termed ‘junk DNA,’ scientists thought that TEs were irrelevant or even harmful,” says research scientist Arianna Mangiavacchi at KAUST, who worked on the study with faculty member Valerio Orlando and co-workers. “However, many positive roles for TEs are now being uncovered, and our work on bone repair adds new knowledge to this field.”

Mangiavacchi and Orlando’s research focuses on aging processes and how the body responds to environmental stressors over time. Scientists know TE levels increase as people age, but their roles in tissue health are poorly understood. Previous work by Mangiavacchi and co-workers suggested a link between LINE-1 RNA activity and bone health, so the team sought to verify the mechanisms at play.

Firstly, the team conducted sequencing experiments on mice with bone fractures and found that TEs, especially LINE-1 RNA, were upregulated for a short period of time following fracture.

“Further investigations showed that LINE-1 RNA activated a program of carefully regulated inflammation, which in turn induced a specific signaling pathway to repair the fracture,” says Mangiavacchi.

The researchers then examined TEs in bone cells (osteoblasts) taken from postmenopausal women with osteoporosis and a healthy control group. TEs, particularly LINEs, were strongly upregulated in healthy femurs with high bone density, while those with lower bone density and osteoporosis exhibited low LINE expression.

“We added synthetic LINE-1 RNA to these cell cultures, and the results were surprisingly clear,” says Mangiavacchi. “Osteoblasts treated with LINE-1 RNA displayed a distinctive phenotype where the bone matrix formed abundantly and quickly. Crucially, cells derived from osteoporotic patients were rescued by the LINE-1 RNA treatment.”

“It appears the human body co-opted viral TEs to trigger an inflammatory response to damage, thus kickstarting the innate immune system to repair bone and tissues. The so-called ‘dark side’ of TEs was acquired deliberately into our genome, enabling us to adapt and be more resilient,” says Orlando.

This discovery is protected by two patents, one licensed to biotech company Altos Labs in California, and the other to the start-up company RepeatEra, founded by Orlando and Mangiavacchi, to take their pro-regenerative therapy to clinical trials.

“We believe this mechanism is not exclusive to bone, and so therapies based on synthetic LINE-1 RNA could have many applications, from corneal repair to skin-protective cosmetics,” says Mangiavacchi. “We are excited to expand on these results and understand how TEs influence other cell types.”

DOI: 10.1038/s44318-024-00143-z
Article Title: LINE-1 RNA triggers matrix formation in bone cells via a PKR-mediated inflammatory response
Article Publication Date: 13-Jul-2024

Media Contact

Michael Cusack
King Abdullah University of Science & Technology (KAUST)
michael.cusack@kaust.edu.sa
Office: 009660128083040
 @KAUST_News

Expert Contact

Valerio Orlando
King Abdullah University of Science and Technology
valerio.orlando@kaust.edu.sa

Media Contact

Michael Cusack
King Abdullah University of Science & Technology (KAUST)

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Illustration of multiferroic heterostructures enabling energy-efficient MRAM with giant magnetoelectric effect.

Magnetic Memory Unlocked with Energy-Efficient MRAM

Researchers from Osaka University introduced an innovative technology to lower power consumption for modern memory devices. Stepping up the Memory Game: Overcoming the Limitations of Traditional RAM Osaka, Japan –…

Framework for automating RBAC compliance checks using process mining and policy validation tools.

Next-Level System Security: Smarter Access Control for Organizations

Cutting-Edge Framework for Enhancing System Security Researchers at the University of Electro-Communications have developed a groundbreaking framework for improving system security by analyzing business process logs. This framework focuses on…

Deep-sea sediment core highlighting microbial carbonate formation at methane seeps.

How Microbial Life Shapes Lime Formation in the Deep Ocean

Microorganisms are everywhere and have been influencing the Earth’s environment for over 3.5 billion years. Researchers from Germany, Austria and Taiwan have now deciphered the role they play in the…