Breathing deep: A metabolic secret of ethane-consuming archaea unraveled

Molecular reactions involved in ethane degradation.
(c) Olivier Lemaire / Max Planck Institute for Marine Microbiology

Scientists from Bremen, Germany, characterize novel enzymes from deep-sea microbes with a key function in the ethane degradation process, revealing surprises in the metabolism of these organisms.

Seeps on the deep seafloor naturally emit alkanes, which are pollutants that are potentially dangerous to life and act on global warming. Fortunately, the sediments around the seeps host microbes that act as a biological filter: They consume most of the alkanes before their release into the oceans and our atmosphere. This so-called anaerobic oxidation of alkanes is an important yet poorly understood microbial process. Scientists from the Max Planck Institute for Marine Microbiology and the Marum Center for Marine Environmental Sciences in Bremen, Germany, now present a study on the degradation of ethane, the second most abundant alkane in seeps. They characterized enzymes involved in the process and found that their reaction breaks an established dogma in the field of anaerobic biochemistry. Their results are published in Nature Communications.

A missing piece in the energy-retrieving machinery suspected from genomic data

The anaerobic oxidation of ethane was described a few years ago, and many of its secrets still have to be unraveled. “When drawing the chemical reactions of the pathway on paper, we found large gaps of uncharted biochemistry. We deduced that the involved organisms must acquire cellular energy through an unknown path”, explains first author Olivier Lemaire. The two last enzymes of the process generate carbon dioxide (CO2) from the ethane. Other microbes use a protein called ferredoxin to take up electrons produced along the way. “That was also assumed in ethane oxidizers. However, when we looked at the genome of the microbes, we found that they don’t have the enzymatic tools to obtain cellular energy by the use of ferredoxin. Thus, something else must be at play.”

A challenging study achieved through a successful scientific collaboration

Solving this riddle was only possible thanks to a close collaboration within the partner institutions. Gunter Wegener and his team managed to sample sediments from hydrothermal vents rich in natural gas and cultivate the ethane-degrading microbial consortium from these in the lab, despite this being a very demanding task. Using these cultures, the group of Tristan Wagner managed to isolate and characterise the enzymes involved in ethane oxidation “Isolating enzymes from such a precious and complex microbial culture is a real challenge, but we managed with a lot of effort and meticulousness”, says Tristan Wagner.

A different enzymatic composition leads to a metabolic rewiring

The analyses now published show that both enzymes harbor an additional protein, electronically connected to the rest of the enzyme through a wiring made of iron and sulfur atoms. This subunit allows the use of an alternative electron acceptor: The F420, a molecule based on flavin, which is a class of chemicals also important to humans (as vitamin B2, for example).

“Enzyme compounds of CO2-forming enzymes and F420-reductases were previously unknown”, says Tristan Wagner. The researchers confirmed by additional experiments that both enzymes used F420 as an electron acceptor. “This discovery breaks a dogma in the scientific field of anaerobic metabolism, as it expands what these enzymes can do.”
“We suppose that the coupling of CO2-generation with F420 as electron acceptor might stimulate the entire process. The electrons are then transferred across the cell membrane to another microbe, reducing sulfate, which is a common principle in alkane-oxidizing consortia” says Gunter Wegener.

A milestone in the understanding of ethane degradation

By elucidating this metabolic riddle, Lemaire and his colleagues reveal a key aspect of the ethane-degrading microbes, which play an important role in the carbon cycle. It also shows that the knowledge gained from a few model organisms cannot be simply transposed to related species and that the enzymes involved can be more versatile than assumed. „Our study illustrates how little we know about the metabolism of these microbes, which have lived on our planet for billions of years and can adapt to so many environments, and how important it is to understand them via experimental means”, Wagner concludes.

The study has a far-reaching impact as the alkane oxidation process performed by this type of microorganism is a crucial element of the biological filter existing in marine seeps, preventing massive effluxes of naturally produced alkanes in the atmosphere and seawater. Therewith the study gives crucial insights into the role of microorganisms in the transformation of organic matter.

Wissenschaftliche Ansprechpartner:

Dr. Tristan Wagner
Max Planck Research Group Microbial Metabolism
Max Planck Institute for Marine Microbiology, Bremen, Germany
Phone: +49 421 2028-7440
E-mail: twagner@mpi-bremen.de

Dr. Gunter Wegener
HGF MPG Bridging Group for Deep-Sea Ecology and Technology
Max Planck Institute for Marine Microbiology, Bremen, Germany
Organic Geochemistry, MARUM – Center for Marine Environmental Sciences, University of Bremen, Germany
Phone: + 49 421 2028-8670
E-mail: gwegener@mpi-bremen.de

Dr. Fanni Aspetsberger
Press Officer
Max Planck Institute for Marine Microbiology, Bremen, Germany
Phone: +49 421 2028-9470
E-mail: presse@mpi-bremen.de

Originalpublikation:

Olivier N. Lemaire, Gunter Wegener, Tristan Wagner (2024): Ethane-oxidising archaea couple CO2 generation to F420 reduction. Nature Communications (published online October 21, 2024).
DOI: https://doi.org/10.1038/s41467-024-53338-7

Weitere Informationen:

https://mpi-bremen.de/en/Page6361.html

Media Contact

Dr. Fanni Aspetsberger Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Marine Mikrobiologie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Towards zero-emissions by fuel-flexible technologies

New Finnish consortium brings cleaner solutions to marine and off-road transport. The Flexible Clean Propulsion Technologies (Flex-CPT) project consortium, led by the University of Vaasa, Finland, aims to develop innovative, clean,…

New method for producing innovative 3D molecules

A team led by chemist Prof Frank Glorius has synthesised so-called heteroatom-substituted cage-like 3D molecules. The innovative structures could help address key challenges in drug design by serving as more…

New method of flexing on electronics

A Virginia Tech team has devised a new method for creating soft, flexible electric connections across and through circuit layers, paving the way for advanced soft robotics, wearable devices, and…