BU uncovers mechanisms used by Wolbachia bacteria to control vectors of deadly diseases
Their findings have been published in the current issue of Science Express, an online publication of selected papers in advance of the print edition of Science, the main journal of the American Association for the Advancement of Science (AAAS).
“Wolbachia are widespread, maternally-transmitted intracellular bacteria that infect most insect species and are able to alter the reproduction of innumerous hosts,” said Horacio Frydman, assistant professor of biology at Boston University and the study's principal investigator. “An important aspect of this relationship is that Wolbachia often alter their host's reproductive ability, yet very little is known about how this is achieved.” In this paper, PhD student Eva Fast and her colleagues in the Frydman lab describe a study in Drosophila mauritiana that offers insights into the cellular mechanisms through which Wolbachia upregulates egg production by their hosts.
Specifically, the BU team demonstrate that Wolbachia in D. mauritiana have a remarkable tropism for terminal filament and cap cells in the female germline stem cell (GSC) niche (and a similar tropism in hub cells, the male GSC niche). They also show through extensive analysis of proliferation and cell death markers in multiple experiments that infected D. mauritiana have higher rates of GSC division and lower rates of germline cyst death in the germarium relative to uninfected counterparts. Finally, they provide compelling evidence suggesting that Wolbachia affects GSC division through effects on the niche. “Knowledge emerging from this research will be relevant for the basic stem cell biology as well for the development of cell biological strategies for disease control,” said Frydman.
About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University's largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University's reputation for teaching and research.
Contact information for the authors:
Horacio M. Frydman, assistant professor of biology, Boston University
E-mail: hfrydman@bu.edu
Phone: +1- 617-358-5070
Media Contact
More Information:
http://www.bu.eduAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Dark energy ‘doesn’t exist’ so can’t be pushing ‘lumpy’ Universe apart
One of the biggest mysteries in science – dark energy – doesn’t actually exist, according to researchers looking to solve the riddle of how the Universe is expanding. For the…
Warming exacerbates oxygen depletion in the Baltic Sea
Rising water temperatures undermine nutrient reduction efforts. Eutrophication and rising water temperatures are taking an increasing toll on the Baltic Sea, leading to dangerous oxygen depletion in deeper water layers…
Time-resolved polarimetric electron microscopy reveals spin meron pair
New technique reveals complex spin structures at femtosecond timescales. Plasmons are collective oscillations of electrons in a solid and are important for a wide range of applications, such as sensing,…