Cause of inflammatory bowel disease discovered
Chronic inflammatory bowel disease (IBD) is becoming increasingly widespread. Until now, however, the underlying causes of the inflammation responses were unclear. Scientists at the Technical University of Munich (TUM) have now identified a mechanism that triggers a problematic interaction between intestinal bacteria and cells in the intestinal mucus layer in XLP2, a condition associated with IBD. The team believes that the results can be applied to other intestinal diseases and could offer approaches to the development of new drugs.
The billions of bacteria living in the human gut – known collectively as the microbiome – are of enormous importance. They help with digestion, among other functions. Consequently, the immune system in the gut must be extremely well regulated: It should fight only harmful pathogens without attacking useful microorganisms. However, this fine balance can be disrupted by various factors.
A defect in the gene XIAP, which causes the rare disease XLP2, results in chronic inflammation of the bowels in 30 percent of all cases, among other symptoms. Babies with this genetic defect often display serious symptoms such as diarrhea, abdominal pain, weakness and weight loss soon after birth. Until now, scientists have been unable to understand the underlying mechanism or discover effective treatments – apart from stem cell transplants, which involve a high risk of mortality.
Overreaction of the innate immune system
Working with organoids – intestinal cells in a Petri dish – and animal experiments, a team headed by Dr. Monica Yabal, Adam Wahida and Madeleine Müller of the Institute for Molecular Immunology and the Clinic of Hematology and Oncology of TUM’s university hospital, Klinikum rechts der Isar, has now identified the mechanism behind the inflammation response and learned how it becomes chronic. “The innate immune system overreacts to microbes in the gut,” says Yabal. The immune system in healthy people eliminates bacteria that cause illness and then returns to its resting state. But in some XLP2 patients, a fatal chain reaction begins:
Every person has toll-like receptors (TLRs) that use unique structures such as molecules in the cell wall to identify harmful microbes. When a TLR binds a molecule, the signaling substance TNF and its TNFR1 and TNFR2 receptors activate the immune system to eliminate the pathogen. However, this does not work properly in XLP2 patients. Instead, the binding of TNF to the TNFR1 receptor on cells known as Paneth cells causes these cells to die, resulting in a vicious circle. That is because the Paneth cells in the gut mucus layer produce antimicrobial substances and thus ensure a bacterial balance in the intestines. The loss of those cells changes the composition of the microbiome. Beneficial bacteria such as clostridia are attacked and can no longer perform their regulatory role. This again activates the immune system.
New drugs could stop the inflammation response
“We believe that this principle might also be applicable to other inflammatory bowel diseases and not only in XLP2 patients,” says Prof. Percy Knolle, the Director of the Institute for Molecular Immunology at TUM. Malfunctioning Paneth cells have also been observed in many patients with inflammatory bowel diseases with various causes.
These insights might open up important avenues for the development of new drugs. Patients with chronic bowel inflammation have been treated for many years with drugs that inhibit the TNF receptors. However, these molecules are not very specific and deactivate both TNFR1 and TNFR2. “Our experiments show that it would be better if we had a selective inhibitor for the TNFR1 receptor,” says Yabal. It also remains unclear why some people respond very well to this treatment while others show no response at all. Consequently, the team would now like to turn its attention to the adaptive immune system, which learns throughout an individual’s lifetime through contact with pathogens and forms special antigens, and also study its special role in the gut.
More information:
The study was funded by the European Research Council (ERC), the German Research Foundation (DFG), the Austrian Research Promotion Agency (FFG) and the German Center for Infection Research (FFG).
High-resolution images:
https://mediatum.ub.tum.de/1641988
Wissenschaftliche Ansprechpartner:
Dr. Monica Yabal
Institut for Molecular Immunology
Klinikum rechts der Isar der Technischen Universität München (TUM)
Tel: +49 89 4140 9748
monica.yabal@tum.de
Originalpublikation:
A. Wahida, M. Müller, A. Hiergeist, B. Popper, K. Steiger, C. Branca, M. Tschurtschenthaler, T. Engleitner, S. Donakonda, J. D. Coninck, R. Öllinger, M. K. Pfautsch, N. Müller, M. Silva, S. Usluer, J. P. Böttcher, N. Pfarr, M. Anton, J. B. Slotta-Huspenina, A. G. Nerlich, T. Madl, M. Basic, A. Bleich, G. Berx, J. Ruland, P. A. Knolle, R. Rad, T. E. Adolph, P. Vandenabeele, H. Kanegane, A. Gessner, P. J. Jost, M. Yabal, XIAP restrains TNF-driven intestinal inflammation and dysbiosis by promoting appropriate immune responses of Paneth and dendritic cells. Sci. Immunol. (2021). DOI: 10.1126/sciimmunol.abf7235.
https://www.tum.de/en/about-tum/news/press-releases/details/37164
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Future AR/VR controllers could be the palm of your hand
Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…
‘Game changer’ in lithium extraction
Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…
Linking data on genetics, traits and environment
…gives crop breeders a wider lens. Understanding how both environmental conditions and genetic makeup affect crops is essential to developing varieties that are more resilient and productive. But the intricate…